Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ranksnb | Structured version Visualization version GIF version |
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
Ref | Expression |
---|---|
ranksnb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴)) | |
2 | 1 | eleq1d 2672 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
3 | 2 | ralsng 4165 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝐴) ∈ 𝑥)) |
4 | 3 | rabbidv 3164 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
5 | 4 | inteqd 4415 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥} = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
6 | snwf 8555 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | |
7 | rankval3b 8572 | . . 3 ⊢ ({𝐴} ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ {𝐴} (rank‘𝑦) ∈ 𝑥}) |
9 | rankon 8541 | . . 3 ⊢ (rank‘𝐴) ∈ On | |
10 | onsucmin 6913 | . . 3 ⊢ ((rank‘𝐴) ∈ On → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) | |
11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ (rank‘𝐴) ∈ 𝑥}) |
12 | 5, 8, 11 | 3eqtr4d 2654 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 {csn 4125 ∪ cuni 4372 ∩ cint 4410 “ cima 5041 Oncon0 5640 suc csuc 5642 ‘cfv 5804 𝑅1cr1 8508 rankcrnk 8509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-r1 8510 df-rank 8511 |
This theorem is referenced by: rankprb 8597 ranksn 8600 rankcf 9478 rankaltopb 31256 |
Copyright terms: Public domain | W3C validator |