MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankidb Structured version   Visualization version   GIF version

Theorem rankidb 8546
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankidb (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))

Proof of Theorem rankidb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rankwflemb 8539 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2 nfcv 2751 . . . . . 6 𝑥𝑅1
3 nfrab1 3099 . . . . . . . 8 𝑥{𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
43nfint 4421 . . . . . . 7 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
54nfsuc 5713 . . . . . 6 𝑥 suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
62, 5nffv 6110 . . . . 5 𝑥(𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
76nfel2 2767 . . . 4 𝑥 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
8 suceq 5707 . . . . . 6 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc 𝑥 = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
98fveq2d 6107 . . . . 5 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝑅1‘suc 𝑥) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
109eleq2d 2673 . . . 4 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})))
117, 10onminsb 6891 . . 3 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
121, 11sylbi 206 . 2 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
13 rankvalb 8543 . . . 4 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
14 suceq 5707 . . . 4 ((rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1513, 14syl 17 . . 3 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1615fveq2d 6107 . 2 (𝐴 (𝑅1 “ On) → (𝑅1‘suc (rank‘𝐴)) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
1712, 16eleqtrrd 2691 1 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wrex 2897  {crab 2900   cuni 4372   cint 4410  cima 5041  Oncon0 5640  suc csuc 5642  cfv 5804  𝑅1cr1 8508  rankcrnk 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511
This theorem is referenced by:  rankdmr1  8547  rankr1ag  8548  sswf  8554  uniwf  8565  rankonidlem  8574  rankid  8579  dfac12lem2  8849  aomclem4  36645
  Copyright terms: Public domain W3C validator