Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rankelg | Structured version Visualization version GIF version |
Description: The membership relation is inherited by the rank function. Closed form of rankel 8585. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
rankelg | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2677 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
2 | fveq2 6103 | . . . . 5 ⊢ (𝑦 = 𝐵 → (rank‘𝑦) = (rank‘𝐵)) | |
3 | 2 | eleq2d 2673 | . . . 4 ⊢ (𝑦 = 𝐵 → ((rank‘𝐴) ∈ (rank‘𝑦) ↔ (rank‘𝐴) ∈ (rank‘𝐵))) |
4 | 1, 3 | imbi12d 333 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑦 → (rank‘𝐴) ∈ (rank‘𝑦)) ↔ (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)))) |
5 | vex 3176 | . . . 4 ⊢ 𝑦 ∈ V | |
6 | 5 | rankel 8585 | . . 3 ⊢ (𝐴 ∈ 𝑦 → (rank‘𝐴) ∈ (rank‘𝑦)) |
7 | 4, 6 | vtoclg 3239 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) |
8 | 7 | imp 444 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 rankcrnk 8509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-reg 8380 ax-inf2 8421 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-r1 8510 df-rank 8511 |
This theorem is referenced by: hfelhf 31458 |
Copyright terms: Public domain | W3C validator |