Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankaltopb Structured version   Visualization version   GIF version

Theorem rankaltopb 31256
Description: Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rankaltopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))

Proof of Theorem rankaltopb
StepHypRef Expression
1 snwf 8555 . . 3 (𝐵 (𝑅1 “ On) → {𝐵} ∈ (𝑅1 “ On))
2 df-altop 31235 . . . . . 6 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
32fveq2i 6106 . . . . 5 (rank‘⟪𝐴, 𝐵⟫) = (rank‘{{𝐴}, {𝐴, {𝐵}}})
4 snwf 8555 . . . . . . 7 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
54adantr 480 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴} ∈ (𝑅1 “ On))
6 prwf 8557 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴, {𝐵}} ∈ (𝑅1 “ On))
7 rankprb 8597 . . . . . 6 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
85, 6, 7syl2anc 691 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
93, 8syl5eq 2656 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
10 snsspr1 4285 . . . . . . . 8 {𝐴} ⊆ {𝐴, {𝐵}}
11 ssequn1 3745 . . . . . . . 8 ({𝐴} ⊆ {𝐴, {𝐵}} ↔ ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}})
1210, 11mpbi 219 . . . . . . 7 ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}}
1312fveq2i 6106 . . . . . 6 (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = (rank‘{𝐴, {𝐵}})
14 rankunb 8596 . . . . . . 7 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
155, 6, 14syl2anc 691 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
16 rankprb 8597 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{𝐴, {𝐵}}) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1713, 15, 163eqtr3a 2668 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
18 suceq 5707 . . . . 5 (((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1917, 18syl 17 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
209, 19eqtrd 2644 . . 3 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
211, 20sylan2 490 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
22 ranksnb 8573 . . . . 5 (𝐵 (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵))
2322uneq2d 3729 . . . 4 (𝐵 (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)))
24 suceq 5707 . . . 4 (((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
25 suceq 5707 . . . 4 (suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2623, 24, 253syl 18 . . 3 (𝐵 (𝑅1 “ On) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2726adantl 481 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2821, 27eqtrd 2644 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cun 3538  wss 3540  {csn 4125  {cpr 4127   cuni 4372  cima 5041  Oncon0 5640  suc csuc 5642  cfv 5804  𝑅1cr1 8508  rankcrnk 8509  caltop 31233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511  df-altop 31235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator