MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleq Structured version   Visualization version   GIF version

Theorem raleleq 3133
Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.)
Assertion
Ref Expression
raleleq (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem raleleq
StepHypRef Expression
1 eleq2 2677 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21biimpd 218 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
32ralrimiv 2948 1 (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-cleq 2603  df-clel 2606  df-ral 2901
This theorem is referenced by:  uvtxnbgrb  40628  cplgruvtxb  40637
  Copyright terms: Public domain W3C validator