Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleleq | Structured version Visualization version GIF version |
Description: All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) |
Ref | Expression |
---|---|
raleleq | ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2677 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpd 218 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
3 | 2 | ralrimiv 2948 | 1 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-cleq 2603 df-clel 2606 df-ral 2901 |
This theorem is referenced by: uvtxnbgrb 40628 cplgruvtxb 40637 |
Copyright terms: Public domain | W3C validator |