MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralel Structured version   Visualization version   GIF version

Theorem ralel 2907
Description: All elements of a class are elements of the class. (Contributed by AV, 30-Oct-2020.)
Ref Expression
ralel 𝑥𝐴 𝑥𝐴

Proof of Theorem ralel
StepHypRef Expression
1 id 22 . 2 (𝑥𝐴𝑥𝐴)
21rgen 2906 1 𝑥𝐴 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 1977  wral 2896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713
This theorem depends on definitions:  df-bi 196  df-ral 2901
This theorem is referenced by:  raleleqALT  3134
  Copyright terms: Public domain W3C validator