Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralbiim | Structured version Visualization version GIF version |
Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim 1806. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
ralbiim | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 658 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
2 | 1 | ralbii 2963 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | r19.26 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑))) | |
4 | 2, 3 | bitri 263 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∀wral 2896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ral 2901 |
This theorem is referenced by: eqreu 3365 isclo2 20702 chrelat4i 28616 hlateq 33703 ntrneik13 37416 ntrneix13 37417 2ralbiim 39823 |
Copyright terms: Public domain | W3C validator |