Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat Structured version   Visualization version   GIF version

Theorem ragflat 25399
 Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat.2 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragflat (𝜑𝐵 = 𝐶)

Proof of Theorem ragflat
StepHypRef Expression
1 simpr 476 . 2 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 israg.p . . 3 𝑃 = (Base‘𝐺)
3 israg.d . . 3 = (dist‘𝐺)
4 israg.i . . 3 𝐼 = (Itv‘𝐺)
5 israg.l . . 3 𝐿 = (LineG‘𝐺)
6 israg.s . . 3 𝑆 = (pInvG‘𝐺)
7 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
87adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
9 israg.a . . . 4 (𝜑𝐴𝑃)
109adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
11 israg.b . . . 4 (𝜑𝐵𝑃)
1211adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
13 israg.c . . . 4 (𝜑𝐶𝑃)
1413adantr 480 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
15 eqid 2610 . . . 4 (𝑆𝐶) = (𝑆𝐶)
162, 3, 4, 5, 6, 8, 14, 15, 10mircl 25356 . . 3 ((𝜑𝐵𝐶) → ((𝑆𝐶)‘𝐴) ∈ 𝑃)
17 ragflat.1 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
1817adantr 480 . . 3 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
192, 3, 4, 5, 6, 8, 14, 15, 10mircgr 25352 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 ((𝑆𝐶)‘𝐴)) = (𝐶 𝐴))
202, 3, 4, 8, 14, 16, 14, 10, 19tgcgrcomlr 25175 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (𝐴 𝐶))
212, 3, 4, 5, 6, 8, 10, 12, 14israg 25392 . . . . . 6 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
2218, 21mpbid 221 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
23 eqid 2610 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
242, 3, 4, 5, 6, 8, 12, 23, 14mircl 25356 . . . . . 6 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
25 ragflat.2 . . . . . . . . . 10 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
2625adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
272, 3, 4, 5, 6, 8, 10, 14, 12, 26ragcom 25393 . . . . . . . 8 ((𝜑𝐵𝐶) → ⟨“𝐵𝐶𝐴”⟩ ∈ (∟G‘𝐺))
28 simpr 476 . . . . . . . 8 ((𝜑𝐵𝐶) → 𝐵𝐶)
292, 3, 4, 5, 6, 8, 12, 23, 14mirbtwn 25353 . . . . . . . . . 10 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
302, 3, 4, 8, 24, 12, 14, 29tgbtwncom 25183 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
312, 5, 4, 8, 14, 24, 12, 30btwncolg1 25250 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆𝐵)‘𝐶)))
322, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31ragcol 25394 . . . . . . 7 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺))
332, 3, 4, 5, 6, 8, 24, 14, 10israg 25392 . . . . . . 7 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴))))
3432, 33mpbid 221 . . . . . 6 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴)))
352, 3, 4, 8, 24, 10, 24, 16, 34tgcgrcomlr 25175 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
3620, 22, 353eqtrd 2648 . . . 4 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
372, 3, 4, 5, 6, 8, 16, 12, 14israg 25392 . . . 4 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶))))
3836, 37mpbird 246 . . 3 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
392, 3, 4, 5, 6, 8, 14, 15, 10mirbtwn 25353 . . . 4 ((𝜑𝐵𝐶) → 𝐶 ∈ (((𝑆𝐶)‘𝐴)𝐼𝐴))
402, 3, 4, 8, 16, 14, 10, 39tgbtwncom 25183 . . 3 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆𝐶)‘𝐴)))
412, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40ragflat2 25398 . 2 ((𝜑𝐵𝐶) → 𝐵 = 𝐶)
421, 41pm2.61dane 2869 1 (𝜑𝐵 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ‘cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347  ∟Gcrag 25388 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-mir 25348  df-rag 25389 This theorem is referenced by:  ragtriva  25400  footex  25413  foot  25414
 Copyright terms: Public domain W3C validator