MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem2 Structured version   Visualization version   GIF version

Theorem radcnvlem2 23972
Description: Lemma for radcnvlt1 23976, radcnvle 23978. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvlem2 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11598 . 2 0 = (ℤ‘0)
2 1nn0 11185 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 id 22 . . . . . 6 (𝑚 = 𝑘𝑚 = 𝑘)
5 fveq2 6103 . . . . . . 7 (𝑚 = 𝑘 → ((𝐺𝑋)‘𝑚) = ((𝐺𝑋)‘𝑘))
65fveq2d 6107 . . . . . 6 (𝑚 = 𝑘 → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐺𝑋)‘𝑘)))
74, 6oveq12d 6567 . . . . 5 (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
8 eqid 2610 . . . . 5 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
9 ovex 6577 . . . . 5 (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ V
107, 8, 9fvmpt 6191 . . . 4 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
1110adantl 481 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
12 nn0re 11178 . . . . 5 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
1312adantl 481 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
14 pser.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
15 radcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
16 psergf.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
1714, 15, 16psergf 23970 . . . . . 6 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
1817ffvelrnda 6267 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘𝑘) ∈ ℂ)
1918abscld 14023 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
2013, 19remulcld 9949 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℝ)
2111, 20eqeltrd 2688 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) ∈ ℝ)
22 fvco3 6185 . . . 4 (((𝐺𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2317, 22sylan 487 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2419recnd 9947 . . 3 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℂ)
2523, 24eqeltrd 2688 . 2 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) ∈ ℂ)
26 radcnvlem2.y . . 3 (𝜑𝑌 ∈ ℂ)
27 radcnvlem2.a . . 3 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
28 radcnvlem2.c . . 3 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
297cbvmptv 4678 . . 3 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
3014, 15, 16, 26, 27, 28, 29radcnvlem1 23971 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))) ∈ dom ⇝ )
31 1red 9934 . 2 (𝜑 → 1 ∈ ℝ)
32 1red 9934 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ∈ ℝ)
33 elnnuz 11600 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
34 nnnn0 11176 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3533, 34sylbir 224 . . . . 5 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
3635, 13sylan2 490 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℝ)
3735, 19sylan2 490 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
3818absge0d 14031 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
3935, 38sylan2 490 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
40 eluzle 11576 . . . . 5 (𝑘 ∈ (ℤ‘1) → 1 ≤ 𝑘)
4140adantl 481 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ≤ 𝑘)
4232, 36, 37, 39, 41lemul1ad 10842 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · (abs‘((𝐺𝑋)‘𝑘))) ≤ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
43 absidm 13911 . . . . . 6 (((𝐺𝑋)‘𝑘) ∈ ℂ → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4418, 43syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4523fveq2d 6107 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (abs‘(abs‘((𝐺𝑋)‘𝑘))))
4624mulid2d 9937 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4744, 45, 463eqtr4d 2654 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4835, 47sylan2 490 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4911oveq2d 6565 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))))
5020recnd 9947 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℂ)
5150mulid2d 9937 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5249, 51eqtrd 2644 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5335, 52sylan2 490 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5442, 48, 533brtr4d 4615 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) ≤ (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)))
551, 3, 21, 25, 30, 31, 54cvgcmpce 14391 1 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cmpt 4643  dom cdm 5038  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cn 10897  0cn0 11169  cuz 11563  seqcseq 12663  cexp 12722  abscabs 13822  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265
This theorem is referenced by:  radcnvlem3  23973  radcnvlt1  23976
  Copyright terms: Public domain W3C validator