Proof of Theorem rabsubmgmd
Step | Hyp | Ref
| Expression |
1 | | ssrab2 3650 |
. . 3
⊢ {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵) |
3 | | rabsubmgmd.th |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) |
4 | 3 | elrab 3331 |
. . . . 5
⊢ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑥 ∈ 𝐵 ∧ 𝜃)) |
5 | | rabsubmgmd.ta |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) |
6 | 5 | elrab 3331 |
. . . . 5
⊢ (𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑦 ∈ 𝐵 ∧ 𝜏)) |
7 | 4, 6 | anbi12i 729 |
. . . 4
⊢ ((𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) |
8 | | rabsubmgmd.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ Mgm) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑀 ∈ Mgm) |
10 | | simprll 798 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑥 ∈ 𝐵) |
11 | | simprrl 800 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑦 ∈ 𝐵) |
12 | | rabsubmgmd.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
13 | | rabsubmgmd.p |
. . . . . . 7
⊢ + =
(+g‘𝑀) |
14 | 12, 13 | mgmcl 17068 |
. . . . . 6
⊢ ((𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
15 | 9, 10, 11, 14 | syl3anc 1318 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ 𝐵) |
16 | | simpl 472 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝜃) → 𝑥 ∈ 𝐵) |
17 | | simpl 472 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝜏) → 𝑦 ∈ 𝐵) |
18 | 16, 17 | anim12i 588 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
19 | | simpr 476 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝜃) → 𝜃) |
20 | | simpr 476 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝜏) → 𝜏) |
21 | 19, 20 | anim12i 588 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏)) → (𝜃 ∧ 𝜏)) |
22 | 18, 21 | jca 553 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏)) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) |
23 | | rabsubmgmd.cp |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) |
24 | 22, 23 | sylan2 490 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝜂) |
25 | | rabsubmgmd.et |
. . . . . 6
⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) |
26 | 25 | elrab 3331 |
. . . . 5
⊢ ((𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ ((𝑥 + 𝑦) ∈ 𝐵 ∧ 𝜂)) |
27 | 15, 24, 26 | sylanbrc 695 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
28 | 7, 27 | sylan2b 491 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓})) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
29 | 28 | ralrimivva 2954 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
30 | 12, 13 | issubmgm 41579 |
. . 3
⊢ (𝑀 ∈ Mgm → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMgm‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
31 | 8, 30 | syl 17 |
. 2
⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMgm‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
32 | 2, 29, 31 | mpbir2and 959 |
1
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMgm‘𝑀)) |