Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabidim2 Structured version   Visualization version   GIF version

Theorem rabidim2 38313
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
rabidim2 (𝑥 ∈ {𝑥𝐴𝜑} → 𝜑)

Proof of Theorem rabidim2
StepHypRef Expression
1 rabid 3095 . . 3 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
21biimpi 205 . 2 (𝑥 ∈ {𝑥𝐴𝜑} → (𝑥𝐴𝜑))
32simprd 478 1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  {crab 2900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-an 385  df-tru 1478  df-ex 1696  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-rab 2905
This theorem is referenced by:  pimrecltpos  39596  pimiooltgt  39598  pimrecltneg  39610  smfaddlem1  39649  smflimlem2  39658  smfrec  39674  smfmullem4  39679  smfdiv  39682
  Copyright terms: Public domain W3C validator