Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabex2OLD Structured version   Visualization version   GIF version

Theorem rabex2OLD 4744
 Description: Obsolete version of rabex2 4742 as of 26-Mar-2021. (Contributed by AV, 16-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rabex2OLD.1 𝐵 = {𝑥𝐴𝜓}
rabex2OLD.2 𝐴𝑉
Assertion
Ref Expression
rabex2OLD 𝐵 ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem rabex2OLD
StepHypRef Expression
1 rabex2OLD.2 . 2 𝐴𝑉
2 rabex2OLD.1 . . 3 𝐵 = {𝑥𝐴𝜓}
3 id 22 . . 3 (𝐴𝑉𝐴𝑉)
42, 3rabexd 4741 . 2 (𝐴𝑉𝐵 ∈ V)
51, 4ax-mp 5 1 𝐵 ∈ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-in 3547  df-ss 3554 This theorem is referenced by:  rab2exOLD  4745
 Copyright terms: Public domain W3C validator