Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqi | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2751 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2751 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | rabeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
4 | 1, 2, 3 | rabeqif 38320 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 {crab 2900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 |
This theorem is referenced by: smflimlem4 39660 |
Copyright terms: Public domain | W3C validator |