Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabdiophlem1 | Structured version Visualization version GIF version |
Description: Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi 2936. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
Ref | Expression |
---|---|
rabdiophlem1 | ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 11263 | . . 3 ⊢ ℤ ∈ V | |
2 | nn0ssz 11275 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
3 | mapss 7786 | . . 3 ⊢ ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0 ↑𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁))) | |
4 | 1, 2, 3 | mp2an 704 | . 2 ⊢ (ℕ0 ↑𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁)) |
5 | mzpf 36317 | . . 3 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ) | |
6 | eqid 2610 | . . . 4 ⊢ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) = (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) | |
7 | 6 | fmpt 6289 | . . 3 ⊢ (∀𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ ↔ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴):(ℤ ↑𝑚 (1...𝑁))⟶ℤ) |
8 | 5, 7 | sylibr 223 | . 2 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) |
9 | ssralv 3629 | . 2 ⊢ ((ℕ0 ↑𝑚 (1...𝑁)) ⊆ (ℤ ↑𝑚 (1...𝑁)) → (∀𝑡 ∈ (ℤ ↑𝑚 (1...𝑁))𝐴 ∈ ℤ → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ)) | |
10 | 4, 8, 9 | mpsyl 66 | 1 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ⊆ wss 3540 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 1c1 9816 ℕ0cn0 11169 ℤcz 11254 ...cfz 12197 mzPolycmzp 36303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-mzpcl 36304 df-mzp 36305 |
This theorem is referenced by: lerabdioph 36387 eluzrabdioph 36388 ltrabdioph 36390 nerabdioph 36391 dvdsrabdioph 36392 |
Copyright terms: Public domain | W3C validator |