MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1om Structured version   Visualization version   GIF version

Theorem r1om 8949
Description: The set of hereditarily finite sets is countable. See ackbij2 8948 for an explicit bijection that works without Infinity. See also r1omALT 9477. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
r1om (𝑅1‘ω) ≈ ω

Proof of Theorem r1om
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8423 . . . 4 ω ∈ V
2 limom 6972 . . . 4 Lim ω
3 r1lim 8518 . . . 4 ((ω ∈ V ∧ Lim ω) → (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎))
41, 2, 3mp2an 704 . . 3 (𝑅1‘ω) = 𝑎 ∈ ω (𝑅1𝑎)
5 r1fnon 8513 . . . 4 𝑅1 Fn On
6 fnfun 5902 . . . 4 (𝑅1 Fn On → Fun 𝑅1)
7 funiunfv 6410 . . . 4 (Fun 𝑅1 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω))
85, 6, 7mp2b 10 . . 3 𝑎 ∈ ω (𝑅1𝑎) = (𝑅1 “ ω)
94, 8eqtri 2632 . 2 (𝑅1‘ω) = (𝑅1 “ ω)
10 iuneq1 4470 . . . . . . 7 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑓𝑎 ({𝑓} × 𝒫 𝑓))
11 sneq 4135 . . . . . . . . 9 (𝑓 = 𝑏 → {𝑓} = {𝑏})
12 pweq 4111 . . . . . . . . 9 (𝑓 = 𝑏 → 𝒫 𝑓 = 𝒫 𝑏)
1311, 12xpeq12d 5064 . . . . . . . 8 (𝑓 = 𝑏 → ({𝑓} × 𝒫 𝑓) = ({𝑏} × 𝒫 𝑏))
1413cbviunv 4495 . . . . . . 7 𝑓𝑎 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏)
1510, 14syl6eq 2660 . . . . . 6 (𝑒 = 𝑎 𝑓𝑒 ({𝑓} × 𝒫 𝑓) = 𝑏𝑎 ({𝑏} × 𝒫 𝑏))
1615fveq2d 6107 . . . . 5 (𝑒 = 𝑎 → (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
1716cbvmptv 4678 . . . 4 (𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓))) = (𝑎 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑏𝑎 ({𝑏} × 𝒫 𝑏)))
18 dmeq 5246 . . . . . . . 8 (𝑐 = 𝑎 → dom 𝑐 = dom 𝑎)
1918pweqd 4113 . . . . . . 7 (𝑐 = 𝑎 → 𝒫 dom 𝑐 = 𝒫 dom 𝑎)
20 imaeq1 5380 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐𝑑) = (𝑎𝑑))
2120fveq2d 6107 . . . . . . 7 (𝑐 = 𝑎 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)))
2219, 21mpteq12dv 4663 . . . . . 6 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))))
23 imaeq2 5381 . . . . . . . 8 (𝑑 = 𝑏 → (𝑎𝑑) = (𝑎𝑏))
2423fveq2d 6107 . . . . . . 7 (𝑑 = 𝑏 → ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑)) = ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2524cbvmptv 4678 . . . . . 6 (𝑑 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏)))
2622, 25syl6eq 2660 . . . . 5 (𝑐 = 𝑎 → (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑))) = (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
2726cbvmptv 4678 . . . 4 (𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))) = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 dom 𝑎 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑎𝑏))))
28 eqid 2610 . . . 4 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω) = (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω)
2917, 27, 28ackbij2 8948 . . 3 (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω
30 fvex 6113 . . . . 5 (𝑅1‘ω) ∈ V
319, 30eqeltrri 2685 . . . 4 (𝑅1 “ ω) ∈ V
3231f1oen 7862 . . 3 ( (rec((𝑐 ∈ V ↦ (𝑑 ∈ 𝒫 dom 𝑐 ↦ ((𝑒 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑒 ({𝑓} × 𝒫 𝑓)))‘(𝑐𝑑)))), ∅) “ ω): (𝑅1 “ ω)–1-1-onto→ω → (𝑅1 “ ω) ≈ ω)
3329, 32ax-mp 5 . 2 (𝑅1 “ ω) ≈ ω
349, 33eqbrtri 4604 1 (𝑅1‘ω) ≈ ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372   ciun 4455   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  cima 5041  Oncon0 5640  Lim wlim 5641  Fun wfun 5798   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  ωcom 6957  reccrdg 7392  cen 7838  Fincfn 7841  𝑅1cr1 8508  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-r1 8510  df-rank 8511  df-card 8648  df-cda 8873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator