Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.45zv Structured version   Visualization version   GIF version

Theorem r19.45zv 4020
 Description: Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.45zv (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.45zv
StepHypRef Expression
1 r19.9rzv 4017 . . 3 (𝐴 ≠ ∅ → (𝜑 ↔ ∃𝑥𝐴 𝜑))
21orbi1d 735 . 2 (𝐴 ≠ ∅ → ((𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓)))
3 r19.43 3074 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
42, 3syl6rbbr 278 1 (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ≠ wne 2780  ∃wrex 2897  ∅c0 3874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-nul 3875 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator