 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.44v Structured version   Visualization version   GIF version

Theorem r19.44v 3075
 Description: One direction of a restricted quantifier version of 19.44 2093. The other direction holds when 𝐴 is nonempty, see r19.44zv 4021. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.44v (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.44v
StepHypRef Expression
1 r19.43 3074 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
2 id 22 . . . 4 (𝜓𝜓)
32rexlimivw 3011 . . 3 (∃𝑥𝐴 𝜓𝜓)
43orim2i 539 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) → (∃𝑥𝐴 𝜑𝜓))
51, 4sylbi 206 1 (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382  ∃wrex 2897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ex 1696  df-ral 2901  df-rex 2902 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator