Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.37v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of one direction of 19.37v 1897. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4019.) (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
r19.37v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1830 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | r19.37 3067 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-nf 1701 df-ral 2901 df-rex 2902 |
This theorem is referenced by: ssiun 4498 isucn2 21893 |
Copyright terms: Public domain | W3C validator |