MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.37v Structured version   Visualization version   GIF version

Theorem r19.37v 3068
Description: Restricted quantifier version of one direction of 19.37v 1897. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4019.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.37v (∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.37v
StepHypRef Expression
1 nfv 1830 . 2 𝑥𝜑
21r19.37 3067 1 (∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 2897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-nf 1701  df-ral 2901  df-rex 2902
This theorem is referenced by:  ssiun  4498  isucn2  21893
  Copyright terms: Public domain W3C validator