 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29imd Structured version   Visualization version   GIF version

Theorem r19.29imd 3056
 Description: Theorem 19.29 of [Margaris] p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019.)
Hypotheses
Ref Expression
r19.29imd.1 (𝜑 → ∃𝑥𝐴 𝜓)
r19.29imd.2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
Assertion
Ref Expression
r19.29imd (𝜑 → ∃𝑥𝐴 (𝜓𝜒))

Proof of Theorem r19.29imd
StepHypRef Expression
1 r19.29imd.1 . . 3 (𝜑 → ∃𝑥𝐴 𝜓)
2 r19.29imd.2 . . 3 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 r19.29r 3055 . . 3 ((∃𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 (𝜓𝜒)) → ∃𝑥𝐴 (𝜓 ∧ (𝜓𝜒)))
41, 2, 3syl2anc 691 . 2 (𝜑 → ∃𝑥𝐴 (𝜓 ∧ (𝜓𝜒)))
5 abai 832 . . 3 ((𝜓𝜒) ↔ (𝜓 ∧ (𝜓𝜒)))
65rexbii 3023 . 2 (∃𝑥𝐴 (𝜓𝜒) ↔ ∃𝑥𝐴 (𝜓 ∧ (𝜓𝜒)))
74, 6sylibr 223 1 (𝜑 → ∃𝑥𝐴 (𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wral 2896  ∃wrex 2897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-ral 2901  df-rex 2902 This theorem is referenced by:  psgndif  19767  neik0pk1imk0  37365
 Copyright terms: Public domain W3C validator