MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusring2 Structured version   Visualization version   GIF version

Theorem qusring2 18443
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring2.u (𝜑𝑈 = (𝑅 /s ))
qusring2.v (𝜑𝑉 = (Base‘𝑅))
qusring2.p + = (+g𝑅)
qusring2.t · = (.r𝑅)
qusring2.o 1 = (1r𝑅)
qusring2.r (𝜑 Er 𝑉)
qusring2.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusring2.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusring2.x (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
qusring2 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Distinct variable groups:   𝑞,𝑝, +   1 ,𝑝,𝑞   𝑎,𝑏,𝑝,𝑞,𝑈   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   · ,𝑝,𝑞   𝑅,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   1 (𝑎,𝑏)

Proof of Theorem qusring2
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusring2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2610 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusring2.r . . . . 5 (𝜑 Er 𝑉)
5 fvex 6113 . . . . . 6 (Base‘𝑅) ∈ V
62, 5syl6eqel 2696 . . . . 5 (𝜑𝑉 ∈ V)
7 erex 7653 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 63 . . . 4 (𝜑 ∈ V)
9 qusring2.x . . . 4 (𝜑𝑅 ∈ Ring)
101, 2, 3, 8, 9qusval 16025 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusring2.p . . 3 + = (+g𝑅)
12 qusring2.t . . 3 · = (.r𝑅)
13 qusring2.o . . 3 1 = (1r𝑅)
141, 2, 3, 8, 9quslem 16026 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
159adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Ring)
16 simprl 790 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
172adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 = (Base‘𝑅))
1816, 17eleqtrd 2690 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
19 simprr 792 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
2019, 17eleqtrd 2690 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
21 eqid 2610 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2221, 11ringacl 18401 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2315, 18, 20, 22syl3anc 1318 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2423, 17eleqtrrd 2691 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
25 qusring2.e1 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
264, 6, 3, 24, 25ercpbl 16032 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
2721, 12ringcl 18384 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
2815, 18, 20, 27syl3anc 1318 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
2928, 17eleqtrrd 2691 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
30 qusring2.e2 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
314, 6, 3, 29, 30ercpbl 16032 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
3210, 2, 11, 12, 13, 14, 26, 31, 9imasring 18442 . 2 (𝜑 → (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
334, 6, 3divsfval 16030 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = [ 1 ] )
3433eqcomd 2616 . . . 4 (𝜑 → [ 1 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 1 ))
3534eqeq1d 2612 . . 3 (𝜑 → ([ 1 ] = (1r𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
3635anbi2d 736 . 2 (𝜑 → ((𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)) ↔ (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈))))
3732, 36mpbird 246 1 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549   Er wer 7626  [cec 7627   / cqs 7628  Basecbs 15695  +gcplusg 15768  .rcmulr 15769   /s cqus 15988  1rcur 18324  Ringcrg 18370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372
This theorem is referenced by:  qus1  19056
  Copyright terms: Public domain W3C validator