MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusabl Structured version   Visualization version   GIF version

Theorem qusabl 18091
Description: If 𝑌 is a subgroup of the abelian group 𝐺, then 𝐻 = 𝐺 / 𝑌 is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypothesis
Ref Expression
qusabl.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusabl ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)

Proof of Theorem qusabl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablnsg 18073 . . . . 5 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
21eleq2d 2673 . . . 4 (𝐺 ∈ Abel → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ (SubGrp‘𝐺)))
32biimpar 501 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (NrmSGrp‘𝐺))
4 qusabl.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
54qusgrp 17472 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
63, 5syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
7 vex 3176 . . . . . . 7 𝑥 ∈ V
87elqs 7686 . . . . . 6 (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆))
94a1i 11 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
10 eqidd 2611 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (Base‘𝐺) = (Base‘𝐺))
11 ovex 6577 . . . . . . . . 9 (𝐺 ~QG 𝑆) ∈ V
1211a1i 11 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ~QG 𝑆) ∈ V)
13 simpl 472 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel)
149, 10, 12, 13qusbas 16028 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝑆)) = (Base‘𝐻))
1514eleq2d 2673 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝐻)))
168, 15syl5bbr 273 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ↔ 𝑥 ∈ (Base‘𝐻)))
17 vex 3176 . . . . . . 7 𝑦 ∈ V
1817elqs 7686 . . . . . 6 (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆))
1914eleq2d 2673 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑦 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝐻)))
2018, 19syl5bbr 273 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆) ↔ 𝑦 ∈ (Base‘𝐻)))
2116, 20anbi12d 743 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))))
22 reeanv 3086 . . . . 5 (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) ↔ (∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)))
23 eqid 2610 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
24 eqid 2610 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
2523, 24ablcom 18033 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
26253expb 1258 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2726adantlr 747 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
2827eceq1d 7670 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
293adantr 480 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑆 ∈ (NrmSGrp‘𝐺))
30 simprl 790 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑎 ∈ (Base‘𝐺))
31 simprr 792 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → 𝑏 ∈ (Base‘𝐺))
32 eqid 2610 . . . . . . . . . 10 (+g𝐻) = (+g𝐻)
334, 23, 24, 32qusadd 17474 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
3429, 30, 31, 33syl3anc 1318 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = [(𝑎(+g𝐺)𝑏)](𝐺 ~QG 𝑆))
354, 23, 24, 32qusadd 17474 . . . . . . . . 9 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺) ∧ 𝑎 ∈ (Base‘𝐺)) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3629, 31, 30, 35syl3anc 1318 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)) = [(𝑏(+g𝐺)𝑎)](𝐺 ~QG 𝑆))
3728, 34, 363eqtr4d 2654 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
38 oveq12 6558 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)))
39 oveq12 6558 . . . . . . . . 9 ((𝑦 = [𝑏](𝐺 ~QG 𝑆) ∧ 𝑥 = [𝑎](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
4039ancoms 468 . . . . . . . 8 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑦(+g𝐻)𝑥) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆)))
4138, 40eqeq12d 2625 . . . . . . 7 ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → ((𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥) ↔ ([𝑎](𝐺 ~QG 𝑆)(+g𝐻)[𝑏](𝐺 ~QG 𝑆)) = ([𝑏](𝐺 ~QG 𝑆)(+g𝐻)[𝑎](𝐺 ~QG 𝑆))))
4237, 41syl5ibrcom 236 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → ((𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4342rexlimdvva 3020 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∃𝑎 ∈ (Base‘𝐺)∃𝑏 ∈ (Base‘𝐺)(𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ 𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4422, 43syl5bir 232 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((∃𝑎 ∈ (Base‘𝐺)𝑥 = [𝑎](𝐺 ~QG 𝑆) ∧ ∃𝑏 ∈ (Base‘𝐺)𝑦 = [𝑏](𝐺 ~QG 𝑆)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4521, 44sylbird 249 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
4645ralrimivv 2953 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))
47 eqid 2610 . . 3 (Base‘𝐻) = (Base‘𝐻)
4847, 32isabl2 18024 . 2 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
496, 46, 48sylanbrc 695 1 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cfv 5804  (class class class)co 6549  [cec 7627   / cqs 7628  Basecbs 15695  +gcplusg 15768   /s cqus 15988  Grpcgrp 17245  SubGrpcsubg 17411  NrmSGrpcnsg 17412   ~QG cqg 17413  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-nsg 17415  df-eqg 17416  df-cmn 18018  df-abl 18019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator