Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quartlem2 | Structured version Visualization version GIF version |
Description: Closure lemmas for quart 24388. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
Ref | Expression |
---|---|
quartlem2 | ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quart.u | . . 3 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
6 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
7 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
8 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
9 | 2, 3, 4, 5, 6, 7, 8 | quart1cl 24381 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
10 | 9 | simp1d 1066 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
11 | 10 | sqcld 12868 | . . . 4 ⊢ (𝜑 → (𝑃↑2) ∈ ℂ) |
12 | 1nn0 11185 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
13 | 2nn 11062 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
14 | 12, 13 | decnncl 11394 | . . . . . 6 ⊢ ;12 ∈ ℕ |
15 | 14 | nncni 10907 | . . . . 5 ⊢ ;12 ∈ ℂ |
16 | 9 | simp3d 1068 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
17 | mulcl 9899 | . . . . 5 ⊢ ((;12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (;12 · 𝑅) ∈ ℂ) | |
18 | 15, 16, 17 | sylancr 694 | . . . 4 ⊢ (𝜑 → (;12 · 𝑅) ∈ ℂ) |
19 | 11, 18 | addcld 9938 | . . 3 ⊢ (𝜑 → ((𝑃↑2) + (;12 · 𝑅)) ∈ ℂ) |
20 | 1, 19 | eqeltrd 2688 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℂ) |
21 | quart.v | . . 3 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
22 | 2cn 10968 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
23 | 3nn0 11187 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
24 | expcl 12740 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ) | |
25 | 10, 23, 24 | sylancl 693 | . . . . . . 7 ⊢ (𝜑 → (𝑃↑3) ∈ ℂ) |
26 | mulcl 9899 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ) | |
27 | 22, 25, 26 | sylancr 694 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑃↑3)) ∈ ℂ) |
28 | 27 | negcld 10258 | . . . . 5 ⊢ (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ) |
29 | 2nn0 11186 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
30 | 7nn 11067 | . . . . . . . 8 ⊢ 7 ∈ ℕ | |
31 | 29, 30 | decnncl 11394 | . . . . . . 7 ⊢ ;27 ∈ ℕ |
32 | 31 | nncni 10907 | . . . . . 6 ⊢ ;27 ∈ ℂ |
33 | 9 | simp2d 1067 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
34 | 33 | sqcld 12868 | . . . . . 6 ⊢ (𝜑 → (𝑄↑2) ∈ ℂ) |
35 | mulcl 9899 | . . . . . 6 ⊢ ((;27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (;27 · (𝑄↑2)) ∈ ℂ) | |
36 | 32, 34, 35 | sylancr 694 | . . . . 5 ⊢ (𝜑 → (;27 · (𝑄↑2)) ∈ ℂ) |
37 | 28, 36 | subcld 10271 | . . . 4 ⊢ (𝜑 → (-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) ∈ ℂ) |
38 | 7nn0 11191 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
39 | 38, 13 | decnncl 11394 | . . . . . 6 ⊢ ;72 ∈ ℕ |
40 | 39 | nncni 10907 | . . . . 5 ⊢ ;72 ∈ ℂ |
41 | 10, 16 | mulcld 9939 | . . . . 5 ⊢ (𝜑 → (𝑃 · 𝑅) ∈ ℂ) |
42 | mulcl 9899 | . . . . 5 ⊢ ((;72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (;72 · (𝑃 · 𝑅)) ∈ ℂ) | |
43 | 40, 41, 42 | sylancr 694 | . . . 4 ⊢ (𝜑 → (;72 · (𝑃 · 𝑅)) ∈ ℂ) |
44 | 37, 43 | addcld 9938 | . . 3 ⊢ (𝜑 → ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅))) ∈ ℂ) |
45 | 21, 44 | eqeltrd 2688 | . 2 ⊢ (𝜑 → 𝑉 ∈ ℂ) |
46 | quart.w | . . 3 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
47 | 45 | sqcld 12868 | . . . . 5 ⊢ (𝜑 → (𝑉↑2) ∈ ℂ) |
48 | 4cn 10975 | . . . . . 6 ⊢ 4 ∈ ℂ | |
49 | expcl 12740 | . . . . . . 7 ⊢ ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ) | |
50 | 20, 23, 49 | sylancl 693 | . . . . . 6 ⊢ (𝜑 → (𝑈↑3) ∈ ℂ) |
51 | mulcl 9899 | . . . . . 6 ⊢ ((4 ∈ ℂ ∧ (𝑈↑3) ∈ ℂ) → (4 · (𝑈↑3)) ∈ ℂ) | |
52 | 48, 50, 51 | sylancr 694 | . . . . 5 ⊢ (𝜑 → (4 · (𝑈↑3)) ∈ ℂ) |
53 | 47, 52 | subcld 10271 | . . . 4 ⊢ (𝜑 → ((𝑉↑2) − (4 · (𝑈↑3))) ∈ ℂ) |
54 | 53 | sqrtcld 14024 | . . 3 ⊢ (𝜑 → (√‘((𝑉↑2) − (4 · (𝑈↑3)))) ∈ ℂ) |
55 | 46, 54 | eqeltrd 2688 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂ) |
56 | 20, 45, 55 | 3jca 1235 | 1 ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 1c1 9816 + caddc 9818 · cmul 9820 − cmin 10145 -cneg 10146 / cdiv 10563 2c2 10947 3c3 10948 4c4 10949 5c5 10950 6c6 10951 7c7 10952 8c8 10953 ℕ0cn0 11169 ;cdc 11369 ↑cexp 12722 √csqrt 13821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 |
This theorem is referenced by: quartlem3 24386 quart 24388 |
Copyright terms: Public domain | W3C validator |