MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1cl Structured version   Visualization version   GIF version

Theorem quart1cl 24381
Description: Closure lemmas for quart 24388. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart1.a (𝜑𝐴 ∈ ℂ)
quart1.b (𝜑𝐵 ∈ ℂ)
quart1.c (𝜑𝐶 ∈ ℂ)
quart1.d (𝜑𝐷 ∈ ℂ)
quart1.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart1.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart1.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
Assertion
Ref Expression
quart1cl (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))

Proof of Theorem quart1cl
StepHypRef Expression
1 quart1.p . . 3 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
2 quart1.b . . . 4 (𝜑𝐵 ∈ ℂ)
3 3cn 10972 . . . . . 6 3 ∈ ℂ
4 8cn 10983 . . . . . 6 8 ∈ ℂ
5 8nn 11068 . . . . . . 7 8 ∈ ℕ
65nnne0i 10932 . . . . . 6 8 ≠ 0
73, 4, 6divcli 10646 . . . . 5 (3 / 8) ∈ ℂ
8 quart1.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
98sqcld 12868 . . . . 5 (𝜑 → (𝐴↑2) ∈ ℂ)
10 mulcl 9899 . . . . 5 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
117, 9, 10sylancr 694 . . . 4 (𝜑 → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
122, 11subcld 10271 . . 3 (𝜑 → (𝐵 − ((3 / 8) · (𝐴↑2))) ∈ ℂ)
131, 12eqeltrd 2688 . 2 (𝜑𝑃 ∈ ℂ)
14 quart1.q . . 3 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
15 quart1.c . . . . 5 (𝜑𝐶 ∈ ℂ)
168, 2mulcld 9939 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
1716halfcld 11154 . . . . 5 (𝜑 → ((𝐴 · 𝐵) / 2) ∈ ℂ)
1815, 17subcld 10271 . . . 4 (𝜑 → (𝐶 − ((𝐴 · 𝐵) / 2)) ∈ ℂ)
19 3nn0 11187 . . . . . 6 3 ∈ ℕ0
20 expcl 12740 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
218, 19, 20sylancl 693 . . . . 5 (𝜑 → (𝐴↑3) ∈ ℂ)
224a1i 11 . . . . 5 (𝜑 → 8 ∈ ℂ)
236a1i 11 . . . . 5 (𝜑 → 8 ≠ 0)
2421, 22, 23divcld 10680 . . . 4 (𝜑 → ((𝐴↑3) / 8) ∈ ℂ)
2518, 24addcld 9938 . . 3 (𝜑 → ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) ∈ ℂ)
2614, 25eqeltrd 2688 . 2 (𝜑𝑄 ∈ ℂ)
27 quart1.r . . 3 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
28 quart1.d . . . . 5 (𝜑𝐷 ∈ ℂ)
2915, 8mulcld 9939 . . . . . 6 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
30 4cn 10975 . . . . . . 7 4 ∈ ℂ
3130a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
32 4ne0 10994 . . . . . . 7 4 ≠ 0
3332a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
3429, 31, 33divcld 10680 . . . . 5 (𝜑 → ((𝐶 · 𝐴) / 4) ∈ ℂ)
3528, 34subcld 10271 . . . 4 (𝜑 → (𝐷 − ((𝐶 · 𝐴) / 4)) ∈ ℂ)
369, 2mulcld 9939 . . . . . 6 (𝜑 → ((𝐴↑2) · 𝐵) ∈ ℂ)
37 1nn0 11185 . . . . . . . . 9 1 ∈ ℕ0
38 6nn 11066 . . . . . . . . 9 6 ∈ ℕ
3937, 38decnncl 11394 . . . . . . . 8 16 ∈ ℕ
4039nncni 10907 . . . . . . 7 16 ∈ ℂ
4140a1i 11 . . . . . 6 (𝜑16 ∈ ℂ)
4239nnne0i 10932 . . . . . . 7 16 ≠ 0
4342a1i 11 . . . . . 6 (𝜑16 ≠ 0)
4436, 41, 43divcld 10680 . . . . 5 (𝜑 → (((𝐴↑2) · 𝐵) / 16) ∈ ℂ)
45 2nn0 11186 . . . . . . . . . 10 2 ∈ ℕ0
46 5nn0 11189 . . . . . . . . . 10 5 ∈ ℕ0
4745, 46deccl 11388 . . . . . . . . 9 25 ∈ ℕ0
4847, 38decnncl 11394 . . . . . . . 8 256 ∈ ℕ
4948nncni 10907 . . . . . . 7 256 ∈ ℂ
5048nnne0i 10932 . . . . . . 7 256 ≠ 0
513, 49, 50divcli 10646 . . . . . 6 (3 / 256) ∈ ℂ
52 4nn0 11188 . . . . . . 7 4 ∈ ℕ0
53 expcl 12740 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
548, 52, 53sylancl 693 . . . . . 6 (𝜑 → (𝐴↑4) ∈ ℂ)
55 mulcl 9899 . . . . . 6 (((3 / 256) ∈ ℂ ∧ (𝐴↑4) ∈ ℂ) → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5651, 54, 55sylancr 694 . . . . 5 (𝜑 → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
5744, 56subcld 10271 . . . 4 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))) ∈ ℂ)
5835, 57addcld 9938 . . 3 (𝜑 → ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) ∈ ℂ)
5927, 58eqeltrd 2688 . 2 (𝜑𝑅 ∈ ℂ)
6013, 26, 593jca 1235 1 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  2c2 10947  3c3 10948  4c4 10949  5c5 10950  6c6 10951  8c8 10953  0cn0 11169  cdc 11369  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by:  quart1  24383  quartlem2  24385  quartlem3  24386  quartlem4  24387  quart  24388
  Copyright terms: Public domain W3C validator