MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quad2 Structured version   Visualization version   GIF version

Theorem quad2 24366
Description: The quadratic equation, without specifying the particular branch 𝐷 to the square root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
quad.a (𝜑𝐴 ∈ ℂ)
quad.z (𝜑𝐴 ≠ 0)
quad.b (𝜑𝐵 ∈ ℂ)
quad.c (𝜑𝐶 ∈ ℂ)
quad.x (𝜑𝑋 ∈ ℂ)
quad2.d (𝜑𝐷 ∈ ℂ)
quad2.2 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))

Proof of Theorem quad2
StepHypRef Expression
1 2cn 10968 . . . . . . . 8 2 ∈ ℂ
2 quad.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 mulcl 9899 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
41, 2, 3sylancr 694 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℂ)
5 quad.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64, 5mulcld 9939 . . . . . 6 (𝜑 → ((2 · 𝐴) · 𝑋) ∈ ℂ)
7 quad.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
86, 7addcld 9938 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) + 𝐵) ∈ ℂ)
98sqcld 12868 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) ∈ ℂ)
10 quad2.d . . . . 5 (𝜑𝐷 ∈ ℂ)
1110sqcld 12868 . . . 4 (𝜑 → (𝐷↑2) ∈ ℂ)
129, 11subeq0ad 10281 . . 3 (𝜑 → ((((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0 ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
135sqcld 12868 . . . . . . 7 (𝜑 → (𝑋↑2) ∈ ℂ)
142, 13mulcld 9939 . . . . . 6 (𝜑 → (𝐴 · (𝑋↑2)) ∈ ℂ)
157, 5mulcld 9939 . . . . . . 7 (𝜑 → (𝐵 · 𝑋) ∈ ℂ)
16 quad.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1715, 16addcld 9938 . . . . . 6 (𝜑 → ((𝐵 · 𝑋) + 𝐶) ∈ ℂ)
1814, 17addcld 9938 . . . . 5 (𝜑 → ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) ∈ ℂ)
19 0cnd 9912 . . . . 5 (𝜑 → 0 ∈ ℂ)
20 4cn 10975 . . . . . 6 4 ∈ ℂ
21 mulcl 9899 . . . . . 6 ((4 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (4 · 𝐴) ∈ ℂ)
2220, 2, 21sylancr 694 . . . . 5 (𝜑 → (4 · 𝐴) ∈ ℂ)
2320a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
24 4ne0 10994 . . . . . . 7 4 ≠ 0
2524a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
26 quad.z . . . . . 6 (𝜑𝐴 ≠ 0)
2723, 2, 25, 26mulne0d 10558 . . . . 5 (𝜑 → (4 · 𝐴) ≠ 0)
2818, 19, 22, 27mulcand 10539 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0))
296sqcld 12868 . . . . . . . 8 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) ∈ ℂ)
306, 7mulcld 9939 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ)
31 mulcl 9899 . . . . . . . . 9 ((2 ∈ ℂ ∧ (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ) → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
321, 30, 31sylancr 694 . . . . . . . 8 (𝜑 → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
332, 16mulcld 9939 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
34 mulcl 9899 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3520, 33, 34sylancr 694 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3629, 32, 35addassd 9941 . . . . . . 7 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
377sqcld 12868 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3829, 32addcld 9938 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) ∈ ℂ)
3937, 38, 35pnncand 10310 . . . . . . 7 (𝜑 → (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))))
404, 5sqmuld 12882 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) = (((2 · 𝐴)↑2) · (𝑋↑2)))
41 sq2 12822 . . . . . . . . . . . . 13 (2↑2) = 4
4241a1i 11 . . . . . . . . . . . 12 (𝜑 → (2↑2) = 4)
432sqvald 12867 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
4442, 43oveq12d 6567 . . . . . . . . . . 11 (𝜑 → ((2↑2) · (𝐴↑2)) = (4 · (𝐴 · 𝐴)))
45 sqmul 12788 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
461, 2, 45sylancr 694 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
4723, 2, 2mulassd 9942 . . . . . . . . . . 11 (𝜑 → ((4 · 𝐴) · 𝐴) = (4 · (𝐴 · 𝐴)))
4844, 46, 473eqtr4d 2654 . . . . . . . . . 10 (𝜑 → ((2 · 𝐴)↑2) = ((4 · 𝐴) · 𝐴))
4948oveq1d 6564 . . . . . . . . 9 (𝜑 → (((2 · 𝐴)↑2) · (𝑋↑2)) = (((4 · 𝐴) · 𝐴) · (𝑋↑2)))
5022, 2, 13mulassd 9942 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · 𝐴) · (𝑋↑2)) = ((4 · 𝐴) · (𝐴 · (𝑋↑2))))
5140, 49, 503eqtrrd 2649 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · (𝐴 · (𝑋↑2))) = (((2 · 𝐴) · 𝑋)↑2))
5222, 15, 16adddid 9943 . . . . . . . . 9 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)))
53 2t2e4 11054 . . . . . . . . . . . . . . . . 17 (2 · 2) = 4
5453oveq1i 6559 . . . . . . . . . . . . . . . 16 ((2 · 2) · 𝐴) = (4 · 𝐴)
551a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
5655, 55, 2mulassd 9942 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
5754, 56syl5eqr 2658 . . . . . . . . . . . . . . 15 (𝜑 → (4 · 𝐴) = (2 · (2 · 𝐴)))
5857oveq1d 6564 . . . . . . . . . . . . . 14 (𝜑 → ((4 · 𝐴) · 𝐵) = ((2 · (2 · 𝐴)) · 𝐵))
5955, 4, 7mulassd 9942 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2 · 𝐴)) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6058, 59eqtrd 2644 . . . . . . . . . . . . 13 (𝜑 → ((4 · 𝐴) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6160oveq1d 6564 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋))
624, 7mulcld 9939 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐴) · 𝐵) ∈ ℂ)
6355, 62, 5mulassd 9942 . . . . . . . . . . . 12 (𝜑 → ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6461, 63eqtrd 2644 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6522, 7, 5mulassd 9942 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((4 · 𝐴) · (𝐵 · 𝑋)))
664, 7, 5mul32d 10125 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐴) · 𝐵) · 𝑋) = (((2 · 𝐴) · 𝑋) · 𝐵))
6766oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (2 · (((2 · 𝐴) · 𝐵) · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6864, 65, 673eqtr3d 2652 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · (𝐵 · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6923, 2, 16mulassd 9942 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · 𝐶) = (4 · (𝐴 · 𝐶)))
7068, 69oveq12d 6567 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7152, 70eqtrd 2644 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7251, 71oveq12d 6567 . . . . . . 7 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
7336, 39, 723eqtr4rd 2655 . . . . . 6 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
7422, 14, 17adddid 9943 . . . . . 6 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))))
75 binom2 12841 . . . . . . . . 9 ((((2 · 𝐴) · 𝑋) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
766, 7, 75syl2anc 691 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
7738, 37addcomd 10117 . . . . . . . 8 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
7876, 77eqtrd 2644 . . . . . . 7 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
79 quad2.2 . . . . . . 7 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
8078, 79oveq12d 6567 . . . . . 6 (𝜑 → (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
8173, 74, 803eqtr4d 2654 . . . . 5 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)))
8222mul01d 10114 . . . . 5 (𝜑 → ((4 · 𝐴) · 0) = 0)
8381, 82eqeq12d 2625 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
8428, 83bitr3d 269 . . 3 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
856, 7subnegd 10278 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) = (((2 · 𝐴) · 𝑋) + 𝐵))
8685oveq1d 6564 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = ((((2 · 𝐴) · 𝑋) + 𝐵)↑2))
8786eqeq1d 2612 . . 3 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
8812, 84, 873bitr4d 299 . 2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2)))
897negcld 10258 . . . 4 (𝜑 → -𝐵 ∈ ℂ)
906, 89subcld 10271 . . 3 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ)
91 sqeqor 12840 . . 3 (((((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
9290, 10, 91syl2anc 691 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
936, 89, 10subaddd 10289 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
9489, 10addcld 9938 . . . . . 6 (𝜑 → (-𝐵 + 𝐷) ∈ ℂ)
95 2ne0 10990 . . . . . . . 8 2 ≠ 0
9695a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9755, 2, 96, 26mulne0d 10558 . . . . . 6 (𝜑 → (2 · 𝐴) ≠ 0)
9894, 4, 5, 97divmuld 10702 . . . . 5 (𝜑 → (((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷)))
99 eqcom 2617 . . . . 5 (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ ((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋)
100 eqcom 2617 . . . . 5 ((-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷))
10198, 99, 1003bitr4g 302 . . . 4 (𝜑 → (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
10293, 101bitr4d 270 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴))))
10389, 10negsubd 10277 . . . . 5 (𝜑 → (-𝐵 + -𝐷) = (-𝐵𝐷))
104103eqeq1d 2612 . . . 4 (𝜑 → ((-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
10510negcld 10258 . . . . 5 (𝜑 → -𝐷 ∈ ℂ)
1066, 89, 105subaddd 10289 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷 ↔ (-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋)))
10789, 10subcld 10271 . . . . . 6 (𝜑 → (-𝐵𝐷) ∈ ℂ)
108107, 4, 5, 97divmuld 10702 . . . . 5 (𝜑 → (((-𝐵𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷)))
109 eqcom 2617 . . . . 5 (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ ((-𝐵𝐷) / (2 · 𝐴)) = 𝑋)
110 eqcom 2617 . . . . 5 ((-𝐵𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷))
111108, 109, 1103bitr4g 302 . . . 4 (𝜑 → (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
112104, 106, 1113bitr4d 299 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷𝑋 = ((-𝐵𝐷) / (2 · 𝐴))))
113102, 112orbi12d 742 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷) ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
11488, 92, 1133bitrd 293 1 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  4c4 10949  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by:  quad  24367  dcubic2  24371  dquartlem1  24378
  Copyright terms: Public domain W3C validator