Step | Hyp | Ref
| Expression |
1 | | qtoprest.2 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | qtoprest.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
3 | | fofn 6030 |
. . . . . . 7
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝑋) |
5 | | qtopid 21318 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
6 | 1, 4, 5 | syl2anc 691 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
7 | | qtoprest.5 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (◡𝐹 “ 𝑈)) |
8 | | cnvimass 5404 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑈) ⊆ dom 𝐹 |
9 | | fndm 5904 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
10 | 4, 9 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = 𝑋) |
11 | 8, 10 | syl5sseq 3616 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ 𝑈) ⊆ 𝑋) |
12 | 7, 11 | eqsstrd 3602 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
13 | | toponuni 20542 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
14 | 1, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
15 | 12, 14 | sseqtrd 3604 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) |
16 | | eqid 2610 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
17 | 16 | cnrest 20899 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ∧ 𝐴 ⊆ ∪ 𝐽) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹))) |
18 | 6, 15, 17 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹))) |
19 | | qtoptopon 21317 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
20 | 1, 2, 19 | syl2anc 691 |
. . . . 5
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
21 | | df-ima 5051 |
. . . . . . 7
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
22 | 7 | imaeq2d 5385 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐹 “ (◡𝐹 “ 𝑈))) |
23 | | qtoprest.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ⊆ 𝑌) |
24 | | foimacnv 6067 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑈 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑈)) = 𝑈) |
25 | 2, 23, 24 | syl2anc 691 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝑈)) = 𝑈) |
26 | 22, 25 | eqtrd 2644 |
. . . . . . 7
⊢ (𝜑 → (𝐹 “ 𝐴) = 𝑈) |
27 | 21, 26 | syl5eqr 2658 |
. . . . . 6
⊢ (𝜑 → ran (𝐹 ↾ 𝐴) = 𝑈) |
28 | | eqimss 3620 |
. . . . . 6
⊢ (ran
(𝐹 ↾ 𝐴) = 𝑈 → ran (𝐹 ↾ 𝐴) ⊆ 𝑈) |
29 | 27, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝐹 ↾ 𝐴) ⊆ 𝑈) |
30 | | cnrest2 20900 |
. . . . 5
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ ran (𝐹 ↾ 𝐴) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑌) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))) |
31 | 20, 29, 23, 30 | syl3anc 1318 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))) |
32 | 18, 31 | mpbid 221 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈))) |
33 | | resttopon 20775 |
. . . 4
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝑈 ⊆ 𝑌) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
34 | 20, 23, 33 | syl2anc 691 |
. . 3
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
35 | | qtopss 21328 |
. . 3
⊢ (((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)) ∧ ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ ran (𝐹 ↾ 𝐴) = 𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |
36 | 32, 34, 27, 35 | syl3anc 1318 |
. 2
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |
37 | | resttopon 20775 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
38 | 1, 12, 37 | syl2anc 691 |
. . . . 5
⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
39 | | fnfun 5902 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
40 | 4, 39 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Fun 𝐹) |
41 | 12, 10 | sseqtr4d 3605 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
42 | | fores 6037 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
43 | 40, 41, 42 | syl2anc 691 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
44 | | foeq3 6026 |
. . . . . . 7
⊢ ((𝐹 “ 𝐴) = 𝑈 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→𝑈)) |
45 | 26, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→𝑈)) |
46 | 43, 45 | mpbid 221 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→𝑈) |
47 | | elqtop3 21316 |
. . . . 5
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝑈) → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ↔ (𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)))) |
48 | 38, 46, 47 | syl2anc 691 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ↔ (𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)))) |
49 | | cnvresima 5541 |
. . . . . . . 8
⊢ (◡(𝐹 ↾ 𝐴) “ 𝑥) = ((◡𝐹 “ 𝑥) ∩ 𝐴) |
50 | | imass2 5420 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑈 → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑈)) |
51 | 50 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑈)) |
52 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → 𝐴 = (◡𝐹 “ 𝑈)) |
53 | 51, 52 | sseqtr4d 3605 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡𝐹 “ 𝑥) ⊆ 𝐴) |
54 | | df-ss 3554 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑥) ⊆ 𝐴 ↔ ((◡𝐹 “ 𝑥) ∩ 𝐴) = (◡𝐹 “ 𝑥)) |
55 | 53, 54 | sylib 207 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡𝐹 “ 𝑥) ∩ 𝐴) = (◡𝐹 “ 𝑥)) |
56 | 49, 55 | syl5eq 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡(𝐹 ↾ 𝐴) “ 𝑥) = (◡𝐹 “ 𝑥)) |
57 | 56 | eleq1d 2672 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) |
58 | | simplrl 796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ⊆ 𝑈) |
59 | | df-ss 3554 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑈 ↔ (𝑥 ∩ 𝑈) = 𝑥) |
60 | 58, 59 | sylib 207 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∩ 𝑈) = 𝑥) |
61 | | topontop 20541 |
. . . . . . . . . . . 12
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
62 | 20, 61 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
63 | 62 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
64 | | toponmax 20543 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
65 | 1, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
66 | | fornex 7028 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐽 → (𝐹:𝑋–onto→𝑌 → 𝑌 ∈ V)) |
67 | 65, 2, 66 | sylc 63 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ V) |
68 | 67, 23 | ssexd 4733 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ V) |
69 | 68 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑈 ∈ V) |
70 | 23 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑈 ⊆ 𝑌) |
71 | 58, 70 | sstrd 3578 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ⊆ 𝑌) |
72 | | topontop 20541 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
73 | 1, 72 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ Top) |
74 | | restopn2 20791 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ ((◡𝐹 “ 𝑥) ∈ 𝐽 ∧ (◡𝐹 “ 𝑥) ⊆ 𝐴))) |
75 | 73, 74 | sylan 487 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐽) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ ((◡𝐹 “ 𝑥) ∈ 𝐽 ∧ (◡𝐹 “ 𝑥) ⊆ 𝐴))) |
76 | 75 | simprbda 651 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ 𝐽) ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
77 | 76 | adantrl 748 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ 𝐽) ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
78 | 77 | an32s 842 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
79 | | elqtop3 21316 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
80 | 1, 2, 79 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
81 | 80 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
82 | 71, 78, 81 | mpbir2and 959 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ∈ (𝐽 qTop 𝐹)) |
83 | | elrestr 15912 |
. . . . . . . . . 10
⊢ (((𝐽 qTop 𝐹) ∈ Top ∧ 𝑈 ∈ V ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (𝑥 ∩ 𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
84 | 63, 69, 82, 83 | syl3anc 1318 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∩ 𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
85 | 60, 84 | eqeltrrd 2689 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
86 | 34 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
87 | | toponuni 20542 |
. . . . . . . . . . . 12
⊢ (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → 𝑈 = ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 = ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
89 | 88 | difeq1d 3689 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) = (∪ ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥)) |
90 | 23 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ 𝑌) |
91 | 20 | ad2antrr 758 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
92 | | toponuni 20542 |
. . . . . . . . . . . . 13
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
94 | 90, 93 | sseqtrd 3604 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ ∪ (𝐽 qTop 𝐹)) |
95 | 90 | ssdifssd 3710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ⊆ 𝑌) |
96 | 40 | ad2antrr 758 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → Fun 𝐹) |
97 | | funcnvcnv 5870 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
98 | | imadif 5887 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑈 ∖ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
99 | 96, 97, 98 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
100 | 7 | ad2antrr 758 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = (◡𝐹 “ 𝑈)) |
101 | 100 | difeq1d 3689 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
102 | 99, 101 | eqtr4d 2647 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) = (𝐴 ∖ (◡𝐹 “ 𝑥))) |
103 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽)) |
104 | 38 | ad2antrr 758 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
105 | | toponuni 20542 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
107 | 106 | difeq1d 3689 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) = (∪ (𝐽 ↾t 𝐴) ∖ (◡𝐹 “ 𝑥))) |
108 | | topontop 20541 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → (𝐽 ↾t 𝐴) ∈ Top) |
109 | 104, 108 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ Top) |
110 | | simplrr 797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) |
111 | | eqid 2610 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
112 | 111 | opncld 20647 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ↾t 𝐴) ∈ Top ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → (∪
(𝐽 ↾t
𝐴) ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
113 | 109, 110,
112 | syl2anc 691 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∪
(𝐽 ↾t
𝐴) ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
114 | 107, 113 | eqeltrd 2688 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
115 | | restcldr 20788 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) |
116 | 103, 114,
115 | syl2anc 691 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) |
117 | 102, 116 | eqeltrd 2688 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)) |
118 | | qtopcld 21326 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
119 | 1, 2, 118 | syl2anc 691 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
120 | 119 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
121 | 95, 117, 120 | mpbir2and 959 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹))) |
122 | | difssd 3700 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ⊆ 𝑈) |
123 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ ∪ (𝐽
qTop 𝐹) = ∪ (𝐽
qTop 𝐹) |
124 | 123 | restcldi 20787 |
. . . . . . . . . . 11
⊢ ((𝑈 ⊆ ∪ (𝐽
qTop 𝐹) ∧ (𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ∧ (𝑈 ∖ 𝑥) ⊆ 𝑈) → (𝑈 ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
125 | 94, 121, 122, 124 | syl3anc 1318 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
126 | 89, 125 | eqeltrrd 2689 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
127 | | topontop 20541 |
. . . . . . . . . . 11
⊢ (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top) |
128 | 86, 127 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top) |
129 | | simplrl 796 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ 𝑈) |
130 | 129, 88 | sseqtrd 3604 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
131 | | eqid 2610 |
. . . . . . . . . . 11
⊢ ∪ ((𝐽
qTop 𝐹) ↾t
𝑈) = ∪ ((𝐽
qTop 𝐹) ↾t
𝑈) |
132 | 131 | isopn2 20646 |
. . . . . . . . . 10
⊢ ((((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top ∧ 𝑥 ⊆ ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))) |
133 | 128, 130,
132 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))) |
134 | 126, 133 | mpbird 246 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
135 | | qtoprest.6 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) |
136 | 135 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) |
137 | 85, 134, 136 | mpjaodan 823 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
138 | 137 | expr 641 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
139 | 57, 138 | sylbid 229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
140 | 139 | expimpd 627 |
. . . 4
⊢ (𝜑 → ((𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
141 | 48, 140 | sylbid 229 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
142 | 141 | ssrdv 3574 |
. 2
⊢ (𝜑 → ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ⊆ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
143 | 36, 142 | eqssd 3585 |
1
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |