MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopbaslem Structured version   Visualization version   GIF version

Theorem qtopbaslem 22372
Description: The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
qtopbas.1 𝑆 ⊆ ℝ*
Assertion
Ref Expression
qtopbaslem ((,) “ (𝑆 × 𝑆)) ∈ TopBases

Proof of Theorem qtopbaslem
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooex 12069 . . . 4 (,) ∈ V
21rnex 6992 . . 3 ran (,) ∈ V
3 imassrn 5396 . . 3 ((,) “ (𝑆 × 𝑆)) ⊆ ran (,)
42, 3ssexi 4731 . 2 ((,) “ (𝑆 × 𝑆)) ∈ V
5 qtopbas.1 . . . . . . . . 9 𝑆 ⊆ ℝ*
65sseli 3564 . . . . . . . 8 (𝑧𝑆𝑧 ∈ ℝ*)
75sseli 3564 . . . . . . . 8 (𝑤𝑆𝑤 ∈ ℝ*)
86, 7anim12i 588 . . . . . . 7 ((𝑧𝑆𝑤𝑆) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*))
95sseli 3564 . . . . . . . 8 (𝑣𝑆𝑣 ∈ ℝ*)
105sseli 3564 . . . . . . . 8 (𝑢𝑆𝑢 ∈ ℝ*)
119, 10anim12i 588 . . . . . . 7 ((𝑣𝑆𝑢𝑆) → (𝑣 ∈ ℝ*𝑢 ∈ ℝ*))
12 iooin 12080 . . . . . . 7 (((𝑧 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑣 ∈ ℝ*𝑢 ∈ ℝ*)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
138, 11, 12syl2an 493 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) = (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)))
14 ifcl 4080 . . . . . . . . 9 ((𝑣𝑆𝑧𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
1514ancoms 468 . . . . . . . 8 ((𝑧𝑆𝑣𝑆) → if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆)
16 ifcl 4080 . . . . . . . 8 ((𝑤𝑆𝑢𝑆) → if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆)
17 df-ov 6552 . . . . . . . . 9 (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) = ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩)
18 opelxpi 5072 . . . . . . . . . 10 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆))
19 ioof 12142 . . . . . . . . . . . 12 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
20 ffun 5961 . . . . . . . . . . . 12 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
2119, 20ax-mp 5 . . . . . . . . . . 11 Fun (,)
22 xpss12 5148 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℝ*𝑆 ⊆ ℝ*) → (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*))
235, 5, 22mp2an 704 . . . . . . . . . . . 12 (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)
2419fdmi 5965 . . . . . . . . . . . 12 dom (,) = (ℝ* × ℝ*)
2523, 24sseqtr4i 3601 . . . . . . . . . . 11 (𝑆 × 𝑆) ⊆ dom (,)
26 funfvima2 6397 . . . . . . . . . . 11 ((Fun (,) ∧ (𝑆 × 𝑆) ⊆ dom (,)) → (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆))))
2721, 25, 26mp2an 704 . . . . . . . . . 10 (⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩ ∈ (𝑆 × 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2818, 27syl 17 . . . . . . . . 9 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → ((,)‘⟨if(𝑧𝑣, 𝑣, 𝑧), if(𝑤𝑢, 𝑤, 𝑢)⟩) ∈ ((,) “ (𝑆 × 𝑆)))
2917, 28syl5eqel 2692 . . . . . . . 8 ((if(𝑧𝑣, 𝑣, 𝑧) ∈ 𝑆 ∧ if(𝑤𝑢, 𝑤, 𝑢) ∈ 𝑆) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3015, 16, 29syl2an 493 . . . . . . 7 (((𝑧𝑆𝑣𝑆) ∧ (𝑤𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3130an4s 865 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (if(𝑧𝑣, 𝑣, 𝑧)(,)if(𝑤𝑢, 𝑤, 𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3213, 31eqeltrd 2688 . . . . 5 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3332ralrimivva 2954 . . . 4 ((𝑧𝑆𝑤𝑆) → ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
3433rgen2a 2960 . . 3 𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))
35 ffn 5958 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3619, 35ax-mp 5 . . . . 5 (,) Fn (ℝ* × ℝ*)
37 ineq1 3769 . . . . . . . 8 (𝑥 = ((,)‘𝑡) → (𝑥𝑦) = (((,)‘𝑡) ∩ 𝑦))
3837eleq1d 2672 . . . . . . 7 (𝑥 = ((,)‘𝑡) → ((𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ (((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
3938ralbidv 2969 . . . . . 6 (𝑥 = ((,)‘𝑡) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
4039ralima 6402 . . . . 5 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
4136, 23, 40mp2an 704 . . . 4 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)))
42 fveq2 6103 . . . . . . . . . 10 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = ((,)‘⟨𝑧, 𝑤⟩))
43 df-ov 6552 . . . . . . . . . 10 (𝑧(,)𝑤) = ((,)‘⟨𝑧, 𝑤⟩)
4442, 43syl6eqr 2662 . . . . . . . . 9 (𝑡 = ⟨𝑧, 𝑤⟩ → ((,)‘𝑡) = (𝑧(,)𝑤))
4544ineq1d 3775 . . . . . . . 8 (𝑡 = ⟨𝑧, 𝑤⟩ → (((,)‘𝑡) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ 𝑦))
4645eleq1d 2672 . . . . . . 7 (𝑡 = ⟨𝑧, 𝑤⟩ → ((((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
4746ralbidv 2969 . . . . . 6 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆))))
48 ineq2 3770 . . . . . . . . . 10 (𝑦 = ((,)‘𝑡) → ((𝑧(,)𝑤) ∩ 𝑦) = ((𝑧(,)𝑤) ∩ ((,)‘𝑡)))
4948eleq1d 2672 . . . . . . . . 9 (𝑦 = ((,)‘𝑡) → (((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
5049ralima 6402 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ (𝑆 × 𝑆) ⊆ (ℝ* × ℝ*)) → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆))))
5136, 23, 50mp2an 704 . . . . . . 7 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)))
52 fveq2 6103 . . . . . . . . . . 11 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = ((,)‘⟨𝑣, 𝑢⟩))
53 df-ov 6552 . . . . . . . . . . 11 (𝑣(,)𝑢) = ((,)‘⟨𝑣, 𝑢⟩)
5452, 53syl6eqr 2662 . . . . . . . . . 10 (𝑡 = ⟨𝑣, 𝑢⟩ → ((,)‘𝑡) = (𝑣(,)𝑢))
5554ineq2d 3776 . . . . . . . . 9 (𝑡 = ⟨𝑣, 𝑢⟩ → ((𝑧(,)𝑤) ∩ ((,)‘𝑡)) = ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)))
5655eleq1d 2672 . . . . . . . 8 (𝑡 = ⟨𝑣, 𝑢⟩ → (((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
5756ralxp 5185 . . . . . . 7 (∀𝑡 ∈ (𝑆 × 𝑆)((𝑧(,)𝑤) ∩ ((,)‘𝑡)) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5851, 57bitri 263 . . . . . 6 (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))((𝑧(,)𝑤) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
5947, 58syl6bb 275 . . . . 5 (𝑡 = ⟨𝑧, 𝑤⟩ → (∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆))))
6059ralxp 5185 . . . 4 (∀𝑡 ∈ (𝑆 × 𝑆)∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(((,)‘𝑡) ∩ 𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
6141, 60bitri 263 . . 3 (∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆)) ↔ ∀𝑧𝑆𝑤𝑆𝑣𝑆𝑢𝑆 ((𝑧(,)𝑤) ∩ (𝑣(,)𝑢)) ∈ ((,) “ (𝑆 × 𝑆)))
6234, 61mpbir 220 . 2 𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))
63 fiinbas 20567 . 2 ((((,) “ (𝑆 × 𝑆)) ∈ V ∧ ∀𝑥 ∈ ((,) “ (𝑆 × 𝑆))∀𝑦 ∈ ((,) “ (𝑆 × 𝑆))(𝑥𝑦) ∈ ((,) “ (𝑆 × 𝑆))) → ((,) “ (𝑆 × 𝑆)) ∈ TopBases)
644, 62, 63mp2an 704 1 ((,) “ (𝑆 × 𝑆)) ∈ TopBases
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  ifcif 4036  𝒫 cpw 4108  cop 4131   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  *cxr 9952  cle 9954  (,)cioo 12046  TopBasesctb 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-bases 20522
This theorem is referenced by:  qtopbas  22373  retopbas  22374
  Copyright terms: Public domain W3C validator