Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > qlaxr5i | Structured version Visualization version GIF version |
Description: One of the conditions showing Cℋ is an ortholattice. (This corresponds to axiom "ax-r5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
qlaxr5.1 | ⊢ 𝐴 ∈ Cℋ |
qlaxr5.2 | ⊢ 𝐵 ∈ Cℋ |
qlaxr5.3 | ⊢ 𝐶 ∈ Cℋ |
qlaxr5.4 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
qlaxr5i | ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlaxr5.4 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | 1 | oveq1i 6559 | 1 ⊢ (𝐴 ∨ℋ 𝐶) = (𝐵 ∨ℋ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 (class class class)co 6549 Cℋ cch 27170 ∨ℋ chj 27174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |