HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr4i Structured version   Visualization version   GIF version

Theorem qlaxr4i 27877
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r4" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr4.1 𝐴C
qlaxr4.2 𝐵C
qlaxr4.3 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr4i (⊥‘𝐴) = (⊥‘𝐵)

Proof of Theorem qlaxr4i
StepHypRef Expression
1 qlaxr4.3 . 2 𝐴 = 𝐵
21fveq2i 6106 1 (⊥‘𝐴) = (⊥‘𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  cfv 5804   C cch 27170  cort 27171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator