MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem4 Structured version   Visualization version   GIF version

Theorem pythagtriplem4 15362
Description: Lemma for pythagtrip 15377. Show that 𝐶𝐵 and 𝐶 + 𝐵 are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)

Proof of Theorem pythagtriplem4
StepHypRef Expression
1 simp3r 1083 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴)
2 nnz 11276 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
3 nnz 11276 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
4 zsubcl 11296 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶𝐵) ∈ ℤ)
52, 3, 4syl2anr 494 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℤ)
653adant1 1072 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℤ)
763ad2ant1 1075 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℤ)
8 simp13 1086 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
9 simp12 1085 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
108, 9nnaddcld 10944 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℕ)
1110nnzd 11357 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ)
12 gcddvds 15063 . . . . . . . . . 10 (((𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵)))
137, 11, 12syl2anc 691 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵)))
1413simprd 478 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵))
15 breq1 4586 . . . . . . . . 9 (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) ↔ 2 ∥ (𝐶 + 𝐵)))
1615biimpd 218 . . . . . . . 8 (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (𝐶 + 𝐵) → 2 ∥ (𝐶 + 𝐵)))
1714, 16mpan9 485 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐶 + 𝐵))
18 simpl13 1131 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℕ)
1918nnzd 11357 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℤ)
20 simpl12 1130 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℕ)
2120nnzd 11357 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℤ)
2219, 21zaddcld 11362 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶 + 𝐵) ∈ ℤ)
2319, 21zsubcld 11363 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐶𝐵) ∈ ℤ)
24 2z 11286 . . . . . . . . 9 2 ∈ ℤ
25 dvdsmultr1 14857 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶𝐵))))
2624, 25mp3an1 1403 . . . . . . . 8 (((𝐶 + 𝐵) ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶𝐵))))
2722, 23, 26syl2anc 691 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐶 + 𝐵) → 2 ∥ ((𝐶 + 𝐵) · (𝐶𝐵))))
2817, 27mpd 15 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶 + 𝐵) · (𝐶𝐵)))
2918nncnd 10913 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐶 ∈ ℂ)
3020nncnd 10913 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐵 ∈ ℂ)
31 subsq 12834 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
3229, 30, 31syl2anc 691 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶𝐵)))
3328, 32breqtrrd 4611 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ ((𝐶↑2) − (𝐵↑2)))
34 simpl2 1058 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
3534oveq1d 6564 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2)))
36 simpl11 1129 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℕ)
3736nnsqcld 12891 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℕ)
3837nncnd 10913 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐴↑2) ∈ ℂ)
3920nnsqcld 12891 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℕ)
4039nncnd 10913 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (𝐵↑2) ∈ ℂ)
4138, 40pncand 10272 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2))
4235, 41eqtr3d 2646 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2))
4333, 42breqtrd 4609 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ (𝐴↑2))
44 nnz 11276 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
45443ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
46453ad2ant1 1075 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ)
4746adantr 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 𝐴 ∈ ℤ)
48 2prm 15243 . . . . . 6 2 ∈ ℙ
49 2nn 11062 . . . . . 6 2 ∈ ℕ
50 prmdvdsexp 15265 . . . . . 6 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴))
5148, 49, 50mp3an13 1407 . . . . 5 (𝐴 ∈ ℤ → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴))
5247, 51syl 17 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → (2 ∥ (𝐴↑2) ↔ 2 ∥ 𝐴))
5343, 52mpbid 221 . . 3 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2) → 2 ∥ 𝐴)
541, 53mtand 689 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2)
55 neg1z 11290 . . . . . . . . 9 -1 ∈ ℤ
56 gcdaddm 15084 . . . . . . . . 9 ((-1 ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))))
5755, 56mp3an1 1403 . . . . . . . 8 (((𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))))
587, 11, 57syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))))
598nncnd 10913 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ)
609nncnd 10913 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ)
61 pnncan 10201 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
62613anidm23 1377 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
63 subcl 10159 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
6463mulm1d 10361 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · (𝐶𝐵)) = -(𝐶𝐵))
6564oveq2d 6565 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶𝐵))) = ((𝐶 + 𝐵) + -(𝐶𝐵)))
66 addcl 9897 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ)
6766, 63negsubd 10277 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + -(𝐶𝐵)) = ((𝐶 + 𝐵) − (𝐶𝐵)))
6865, 67eqtrd 2644 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶𝐵))) = ((𝐶 + 𝐵) − (𝐶𝐵)))
69 2times 11022 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
7069adantl 481 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
7162, 68, 703eqtr4d 2654 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (-1 · (𝐶𝐵))) = (2 · 𝐵))
7271oveq2d 6565 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))) = ((𝐶𝐵) gcd (2 · 𝐵)))
7359, 60, 72syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (-1 · (𝐶𝐵)))) = ((𝐶𝐵) gcd (2 · 𝐵)))
7458, 73eqtrd 2644 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd (2 · 𝐵)))
759nnzd 11357 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℤ)
76 zmulcl 11303 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐵) ∈ ℤ)
7724, 75, 76sylancr 694 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐵) ∈ ℤ)
78 gcddvds 15063 . . . . . . . 8 (((𝐶𝐵) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ) → (((𝐶𝐵) gcd (2 · 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵)))
797, 77, 78syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (2 · 𝐵)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵)))
8079simprd 478 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (2 · 𝐵)) ∥ (2 · 𝐵))
8174, 80eqbrtrd 4605 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵))
82 1z 11284 . . . . . . . . 9 1 ∈ ℤ
83 gcdaddm 15084 . . . . . . . . 9 ((1 ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶𝐵)))))
8482, 83mp3an1 1403 . . . . . . . 8 (((𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶𝐵)))))
857, 11, 84syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶𝐵)))))
86 ppncan 10202 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
87863anidm13 1376 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶𝐵)) = (𝐶 + 𝐶))
8863mulid2d 9937 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐶𝐵)) = (𝐶𝐵))
8988oveq2d 6565 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶𝐵))) = ((𝐶 + 𝐵) + (𝐶𝐵)))
90 2times 11022 . . . . . . . . . . 11 (𝐶 ∈ ℂ → (2 · 𝐶) = (𝐶 + 𝐶))
9190adantr 480 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐶) = (𝐶 + 𝐶))
9287, 89, 913eqtr4d 2654 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (1 · (𝐶𝐵))) = (2 · 𝐶))
9359, 60, 92syl2anc 691 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (1 · (𝐶𝐵))) = (2 · 𝐶))
9493oveq2d 6565 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd ((𝐶 + 𝐵) + (1 · (𝐶𝐵)))) = ((𝐶𝐵) gcd (2 · 𝐶)))
9585, 94eqtrd 2644 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = ((𝐶𝐵) gcd (2 · 𝐶)))
968nnzd 11357 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℤ)
97 zmulcl 11303 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (2 · 𝐶) ∈ ℤ)
9824, 96, 97sylancr 694 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐶) ∈ ℤ)
99 gcddvds 15063 . . . . . . . 8 (((𝐶𝐵) ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) → (((𝐶𝐵) gcd (2 · 𝐶)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶)))
1007, 98, 99syl2anc 691 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (2 · 𝐶)) ∥ (𝐶𝐵) ∧ ((𝐶𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶)))
101100simprd 478 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (2 · 𝐶)) ∥ (2 · 𝐶))
10295, 101eqbrtrd 4605 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶))
103 nnaddcl 10919 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℕ)
104103nnne0d 10942 . . . . . . . . . . . . 13 ((𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0)
105104ancoms 468 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0)
1061053adant1 1072 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ≠ 0)
1071063ad2ant1 1075 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ≠ 0)
108107neneqd 2787 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ (𝐶 + 𝐵) = 0)
109108intnand 953 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ ((𝐶𝐵) = 0 ∧ (𝐶 + 𝐵) = 0))
110 gcdn0cl 15062 . . . . . . . 8 ((((𝐶𝐵) ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ) ∧ ¬ ((𝐶𝐵) = 0 ∧ (𝐶 + 𝐵) = 0)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ)
1117, 11, 109, 110syl21anc 1317 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ)
112111nnzd 11357 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ)
113 dvdsgcd 15099 . . . . . 6 ((((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℤ ∧ (2 · 𝐵) ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) → ((((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶))))
114112, 77, 98, 113syl3anc 1318 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐵) ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ (2 · 𝐶)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶))))
11581, 102, 114mp2and 711 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ ((2 · 𝐵) gcd (2 · 𝐶)))
116 2nn0 11186 . . . . . . 7 2 ∈ ℕ0
117 mulgcd 15103 . . . . . . 7 ((2 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶)))
118116, 117mp3an1 1403 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶)))
11975, 96, 118syl2anc 691 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = (2 · (𝐵 gcd 𝐶)))
120 pythagtriplem3 15361 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1)
121120oveq2d 6565 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = (2 · 1))
122 2t1e2 11053 . . . . . 6 (2 · 1) = 2
123121, 122syl6eq 2660 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 gcd 𝐶)) = 2)
124119, 123eqtrd 2644 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) gcd (2 · 𝐶)) = 2)
125115, 124breqtrd 4609 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ 2)
126 dvdsprime 15238 . . . 4 ((2 ∈ ℙ ∧ ((𝐶𝐵) gcd (𝐶 + 𝐵)) ∈ ℕ) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)))
12748, 111, 126sylancr 694 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) ∥ 2 ↔ (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)))
128125, 127mpbid 221 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1))
129 orel1 396 . 2 (¬ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 → ((((𝐶𝐵) gcd (𝐶 + 𝐵)) = 2 ∨ ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1))
13054, 128, 129sylc 63 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146  cn 10897  2c2 10947  0cn0 11169  cz 11254  cexp 12722  cdvds 14821   gcd cgcd 15054  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224
This theorem is referenced by:  pythagtriplem6  15364  pythagtriplem7  15365
  Copyright terms: Public domain W3C validator