Step | Hyp | Ref
| Expression |
1 | | oveq1 6556 |
. . 3
⊢ (𝑎 = 𝑌 → (𝑎𝐹𝑠) = (𝑌𝐹𝑠)) |
2 | | fveq2 6103 |
. . . 4
⊢ (𝑎 = 𝑌 → (card‘𝑎) = (card‘𝑌)) |
3 | 2 | fveq2d 6107 |
. . 3
⊢ (𝑎 = 𝑌 → (𝐻‘(card‘𝑎)) = (𝐻‘(card‘𝑌))) |
4 | 1, 3 | eqeq12d 2625 |
. 2
⊢ (𝑎 = 𝑌 → ((𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)) ↔ (𝑌𝐹𝑠) = (𝐻‘(card‘𝑌)))) |
5 | | oveq2 6557 |
. . 3
⊢ (𝑠 = 𝑅 → (𝑌𝐹𝑠) = (𝑌𝐹𝑅)) |
6 | 5 | eqeq1d 2612 |
. 2
⊢ (𝑠 = 𝑅 → ((𝑌𝐹𝑠) = (𝐻‘(card‘𝑌)) ↔ (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌)))) |
7 | | nfcv 2751 |
. . 3
⊢
Ⅎ𝑥𝑎 |
8 | | nfcv 2751 |
. . 3
⊢
Ⅎ𝑟𝑎 |
9 | | nfcv 2751 |
. . 3
⊢
Ⅎ𝑟𝑠 |
10 | | pwfseqlem4.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
11 | | nfmpt21 6620 |
. . . . . 6
⊢
Ⅎ𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
12 | 10, 11 | nfcxfr 2749 |
. . . . 5
⊢
Ⅎ𝑥𝐹 |
13 | | nfcv 2751 |
. . . . 5
⊢
Ⅎ𝑥𝑟 |
14 | 7, 12, 13 | nfov 6575 |
. . . 4
⊢
Ⅎ𝑥(𝑎𝐹𝑟) |
15 | 14 | nfeq1 2764 |
. . 3
⊢
Ⅎ𝑥(𝑎𝐹𝑟) = (𝐻‘(card‘𝑎)) |
16 | | nfmpt22 6621 |
. . . . . 6
⊢
Ⅎ𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
17 | 10, 16 | nfcxfr 2749 |
. . . . 5
⊢
Ⅎ𝑟𝐹 |
18 | 8, 17, 9 | nfov 6575 |
. . . 4
⊢
Ⅎ𝑟(𝑎𝐹𝑠) |
19 | 18 | nfeq1 2764 |
. . 3
⊢
Ⅎ𝑟(𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)) |
20 | | oveq1 6556 |
. . . 4
⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟)) |
21 | | fveq2 6103 |
. . . . 5
⊢ (𝑥 = 𝑎 → (card‘𝑥) = (card‘𝑎)) |
22 | 21 | fveq2d 6107 |
. . . 4
⊢ (𝑥 = 𝑎 → (𝐻‘(card‘𝑥)) = (𝐻‘(card‘𝑎))) |
23 | 20, 22 | eqeq12d 2625 |
. . 3
⊢ (𝑥 = 𝑎 → ((𝑥𝐹𝑟) = (𝐻‘(card‘𝑥)) ↔ (𝑎𝐹𝑟) = (𝐻‘(card‘𝑎)))) |
24 | | oveq2 6557 |
. . . 4
⊢ (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠)) |
25 | 24 | eqeq1d 2612 |
. . 3
⊢ (𝑟 = 𝑠 → ((𝑎𝐹𝑟) = (𝐻‘(card‘𝑎)) ↔ (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎)))) |
26 | | vex 3176 |
. . . . . 6
⊢ 𝑥 ∈ V |
27 | | vex 3176 |
. . . . . 6
⊢ 𝑟 ∈ V |
28 | | fvex 6113 |
. . . . . . 7
⊢ (𝐻‘(card‘𝑥)) ∈ V |
29 | | fvex 6113 |
. . . . . . 7
⊢ (𝐷‘∩ {𝑧
∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}) ∈ V |
30 | 28, 29 | ifex 4106 |
. . . . . 6
⊢ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) ∈ V |
31 | 10 | ovmpt4g 6681 |
. . . . . 6
⊢ ((𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) ∈ V) → (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
32 | 26, 27, 30, 31 | mp3an 1416 |
. . . . 5
⊢ (𝑥𝐹𝑟) = if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) |
33 | | iftrue 4042 |
. . . . 5
⊢ (𝑥 ∈ Fin → if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥})) = (𝐻‘(card‘𝑥))) |
34 | 32, 33 | syl5eq 2656 |
. . . 4
⊢ (𝑥 ∈ Fin → (𝑥𝐹𝑟) = (𝐻‘(card‘𝑥))) |
35 | 34 | adantr 480 |
. . 3
⊢ ((𝑥 ∈ Fin ∧ 𝑟 ∈ 𝑉) → (𝑥𝐹𝑟) = (𝐻‘(card‘𝑥))) |
36 | 7, 8, 9, 15, 19, 23, 25, 35 | vtocl2gaf 3246 |
. 2
⊢ ((𝑎 ∈ Fin ∧ 𝑠 ∈ 𝑉) → (𝑎𝐹𝑠) = (𝐻‘(card‘𝑎))) |
37 | 4, 6, 36 | vtocl2ga 3247 |
1
⊢ ((𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌))) |