Proof of Theorem pwfi2f1o
Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. . . . 5
⊢ (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) = (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})) |
2 | 1 | pw2f1o2 36623 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1-onto→𝒫 𝐴) |
3 | | f1of1 6049 |
. . . 4
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1→𝒫 𝐴) |
4 | 2, 3 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1→𝒫 𝐴) |
5 | | pwfi2f1o.s |
. . . 4
⊢ 𝑆 = {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ 𝑦 finSupp ∅} |
6 | | ssrab2 3650 |
. . . 4
⊢ {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ 𝑦 finSupp ∅} ⊆
(2𝑜 ↑𝑚 𝐴) |
7 | 5, 6 | eqsstri 3598 |
. . 3
⊢ 𝑆 ⊆ (2𝑜
↑𝑚 𝐴) |
8 | | f1ores 6064 |
. . 3
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1→𝒫 𝐴 ∧ 𝑆 ⊆ (2𝑜
↑𝑚 𝐴)) → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆)) |
9 | 4, 7, 8 | sylancl 693 |
. 2
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆)) |
10 | | elmapfun 7767 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → Fun 𝑦) |
11 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) |
12 | | 0ex 4718 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ V |
13 | 12 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → ∅ ∈ V) |
14 | 10, 11, 13 | 3jca 1235 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → (Fun 𝑦 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∧ ∅ ∈ V)) |
15 | 14 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (Fun 𝑦 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∧ ∅ ∈ V)) |
16 | | funisfsupp 8163 |
. . . . . . . . . . 11
⊢ ((Fun
𝑦 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∧ ∅ ∈ V) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈
Fin)) |
17 | 15, 16 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ (𝑦 supp ∅) ∈ Fin)) |
18 | 13 | anim2i 591 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝐴 ∈ 𝑉 ∧ ∅ ∈ V)) |
19 | | elmapi 7765 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (2𝑜
↑𝑚 𝐴) → 𝑦:𝐴⟶2𝑜) |
20 | 19 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → 𝑦:𝐴⟶2𝑜) |
21 | | frnsuppeq 7194 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑦:𝐴⟶2𝑜 → (𝑦 supp ∅) = (◡𝑦 “ (2𝑜 ∖
{∅})))) |
22 | 18, 20, 21 | sylc 63 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 supp ∅) = (◡𝑦 “ (2𝑜 ∖
{∅}))) |
23 | | df-2o 7448 |
. . . . . . . . . . . . . . . 16
⊢
2𝑜 = suc 1𝑜 |
24 | | df-suc 5646 |
. . . . . . . . . . . . . . . . 17
⊢ suc
1𝑜 = (1𝑜 ∪
{1𝑜}) |
25 | 24 | equncomi 3721 |
. . . . . . . . . . . . . . . 16
⊢ suc
1𝑜 = ({1𝑜} ∪
1𝑜) |
26 | 23, 25 | eqtri 2632 |
. . . . . . . . . . . . . . 15
⊢
2𝑜 = ({1𝑜} ∪
1𝑜) |
27 | | df1o2 7459 |
. . . . . . . . . . . . . . . 16
⊢
1𝑜 = {∅} |
28 | 27 | eqcomi 2619 |
. . . . . . . . . . . . . . 15
⊢ {∅}
= 1𝑜 |
29 | 26, 28 | difeq12i 3688 |
. . . . . . . . . . . . . 14
⊢
(2𝑜 ∖ {∅}) = (({1𝑜}
∪ 1𝑜) ∖ 1𝑜) |
30 | | difun2 4000 |
. . . . . . . . . . . . . . 15
⊢
(({1𝑜} ∪ 1𝑜) ∖
1𝑜) = ({1𝑜} ∖
1𝑜) |
31 | | incom 3767 |
. . . . . . . . . . . . . . . . 17
⊢
({1𝑜} ∩ 1𝑜) =
(1𝑜 ∩ {1𝑜}) |
32 | | 1on 7454 |
. . . . . . . . . . . . . . . . . . 19
⊢
1𝑜 ∈ On |
33 | 32 | onordi 5749 |
. . . . . . . . . . . . . . . . . 18
⊢ Ord
1𝑜 |
34 | | orddisj 5679 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord
1𝑜 → (1𝑜 ∩
{1𝑜}) = ∅) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(1𝑜 ∩ {1𝑜}) =
∅ |
36 | 31, 35 | eqtri 2632 |
. . . . . . . . . . . . . . . 16
⊢
({1𝑜} ∩ 1𝑜) =
∅ |
37 | | disj3 3973 |
. . . . . . . . . . . . . . . 16
⊢
(({1𝑜} ∩ 1𝑜) = ∅ ↔
{1𝑜} = ({1𝑜} ∖
1𝑜)) |
38 | 36, 37 | mpbi 219 |
. . . . . . . . . . . . . . 15
⊢
{1𝑜} = ({1𝑜} ∖
1𝑜) |
39 | 30, 38 | eqtr4i 2635 |
. . . . . . . . . . . . . 14
⊢
(({1𝑜} ∪ 1𝑜) ∖
1𝑜) = {1𝑜} |
40 | 29, 39 | eqtri 2632 |
. . . . . . . . . . . . 13
⊢
(2𝑜 ∖ {∅}) =
{1𝑜} |
41 | 40 | imaeq2i 5383 |
. . . . . . . . . . . 12
⊢ (◡𝑦 “ (2𝑜 ∖
{∅})) = (◡𝑦 “
{1𝑜}) |
42 | 22, 41 | syl6eq 2660 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 supp ∅) = (◡𝑦 “
{1𝑜})) |
43 | 42 | eleq1d 2672 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → ((𝑦 supp ∅) ∈ Fin ↔ (◡𝑦 “ {1𝑜}) ∈
Fin)) |
44 | | cnvimass 5404 |
. . . . . . . . . . . 12
⊢ (◡𝑦 “ {1𝑜}) ⊆ dom
𝑦 |
45 | | fdm 5964 |
. . . . . . . . . . . . 13
⊢ (𝑦:𝐴⟶2𝑜 → dom
𝑦 = 𝐴) |
46 | 20, 45 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → dom 𝑦 = 𝐴) |
47 | 44, 46 | syl5sseq 3616 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (◡𝑦 “ {1𝑜}) ⊆
𝐴) |
48 | 47 | biantrurd 528 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → ((◡𝑦 “ {1𝑜}) ∈ Fin
↔ ((◡𝑦 “ {1𝑜}) ⊆
𝐴 ∧ (◡𝑦 “ {1𝑜}) ∈
Fin))) |
49 | 17, 43, 48 | 3bitrd 293 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ ((◡𝑦 “ {1𝑜}) ⊆
𝐴 ∧ (◡𝑦 “ {1𝑜}) ∈
Fin))) |
50 | | elfpw 8151 |
. . . . . . . . 9
⊢ ((◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩ Fin)
↔ ((◡𝑦 “ {1𝑜}) ⊆
𝐴 ∧ (◡𝑦 “ {1𝑜}) ∈
Fin)) |
51 | 49, 50 | syl6bbr 277 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ (2𝑜
↑𝑚 𝐴)) → (𝑦 finSupp ∅ ↔ (◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩
Fin))) |
52 | 51 | rabbidva 3163 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ 𝑦 finSupp ∅} = {𝑦 ∈ (2𝑜
↑𝑚 𝐴) ∣ (◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩
Fin)}) |
53 | | cnveq 5218 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ◡𝑥 = ◡𝑦) |
54 | 53 | imaeq1d 5384 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (◡𝑥 “ {1𝑜}) = (◡𝑦 “
{1𝑜})) |
55 | 54 | cbvmptv 4678 |
. . . . . . . 8
⊢ (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) = (𝑦 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑦 “
{1𝑜})) |
56 | 55 | mptpreima 5545 |
. . . . . . 7
⊢ (◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩ Fin)) =
{𝑦 ∈
(2𝑜 ↑𝑚 𝐴) ∣ (◡𝑦 “ {1𝑜}) ∈
(𝒫 𝐴 ∩
Fin)} |
57 | 52, 5, 56 | 3eqtr4g 2669 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝑆 = (◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩
Fin))) |
58 | 57 | imaeq2d 5385 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) = ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩
Fin)))) |
59 | | f1ofo 6057 |
. . . . . . 7
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–1-1-onto→𝒫 𝐴 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–onto→𝒫 𝐴) |
60 | 2, 59 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–onto→𝒫 𝐴) |
61 | | inss1 3795 |
. . . . . 6
⊢
(𝒫 𝐴 ∩
Fin) ⊆ 𝒫 𝐴 |
62 | | foimacnv 6067 |
. . . . . 6
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “
{1𝑜})):(2𝑜 ↑𝑚
𝐴)–onto→𝒫 𝐴 ∧ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴) → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩ Fin))) =
(𝒫 𝐴 ∩
Fin)) |
63 | 60, 61, 62 | sylancl 693 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(◡(𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
(𝒫 𝐴 ∩ Fin))) =
(𝒫 𝐴 ∩
Fin)) |
64 | 58, 63 | eqtrd 2644 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) = (𝒫 𝐴 ∩ Fin)) |
65 | | f1oeq3 6042 |
. . . 4
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) = (𝒫 𝐴 ∩ Fin) → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) ↔ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
66 | 64, 65 | syl 17 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) ↔ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
67 | | resmpt 5369 |
. . . . . 6
⊢ (𝑆 ⊆ (2𝑜
↑𝑚 𝐴) → ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “
{1𝑜}))) |
68 | 7, 67 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “
{1𝑜})) |
69 | | pwfi2f1o.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “
{1𝑜})) |
70 | 68, 69 | eqtr4i 2635 |
. . . 4
⊢ ((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = 𝐹 |
71 | | f1oeq1 6040 |
. . . 4
⊢ (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆) = 𝐹 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
72 | 70, 71 | mp1i 13 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
73 | 66, 72 | bitrd 267 |
. 2
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) ↾
𝑆):𝑆–1-1-onto→((𝑥 ∈ (2𝑜
↑𝑚 𝐴) ↦ (◡𝑥 “ {1𝑜})) “
𝑆) ↔ 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin))) |
74 | 9, 73 | mpbid 221 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |