Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pthdlem2lem Structured version   Visualization version   GIF version

Theorem pthdlem2lem 40973
 Description: Lemma for pthdlem2 40974. (Contributed by AV, 10-Feb-2021.)
Hypotheses
Ref Expression
pthd.p (𝜑𝑃 ∈ Word V)
pthd.r 𝑅 = ((#‘𝑃) − 1)
pthd.s (𝜑 → ∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
Assertion
Ref Expression
pthdlem2lem ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
Distinct variable groups:   𝑃,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐼,𝑗

Proof of Theorem pthdlem2lem
StepHypRef Expression
1 pthd.s . . . . . 6 (𝜑 → ∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
213ad2ant1 1075 . . . . 5 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
3 ralcom 3079 . . . . . 6 (∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(#‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)))
4 elfzo1 12385 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1..^𝑅) ↔ (𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅))
5 nnne0 10930 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 𝑗 ≠ 0)
65necomd 2837 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → 0 ≠ 𝑗)
763ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 0 ≠ 𝑗)
84, 7sylbi 206 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 0 ≠ 𝑗)
98adantl 481 . . . . . . . . . . . . . . 15 (((#‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 0 ≠ 𝑗)
10 neeq1 2844 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼𝑗 ↔ 0 ≠ 𝑗))
119, 10syl5ibr 235 . . . . . . . . . . . . . 14 (𝐼 = 0 → (((#‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
1211expd 451 . . . . . . . . . . . . 13 (𝐼 = 0 → ((#‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
13 nnre 10904 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
1413adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑗 ∈ ℝ)
15 nnre 10904 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
1615adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑅 ∈ ℝ)
1714, 16ltlend 10061 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅 ↔ (𝑗𝑅𝑅𝑗)))
18 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑅𝑅𝑗) → 𝑅𝑗)
1917, 18syl6bi 242 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅𝑅𝑗))
20193impia 1253 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 𝑅𝑗)
214, 20sylbi 206 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1..^𝑅) → 𝑅𝑗)
2221adantl 481 . . . . . . . . . . . . . . 15 (((#‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝑅𝑗)
23 neeq1 2844 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼𝑗𝑅𝑗))
2422, 23syl5ibr 235 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → (((#‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗))
2524expd 451 . . . . . . . . . . . . 13 (𝐼 = 𝑅 → ((#‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2612, 25jaoi 393 . . . . . . . . . . . 12 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((#‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗)))
2726impcom 445 . . . . . . . . . . 11 (((#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
28273adant1 1072 . . . . . . . . . 10 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼𝑗))
2928imp 444 . . . . . . . . 9 (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼𝑗)
30 lbfzo0 12375 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(#‘𝑃)) ↔ (#‘𝑃) ∈ ℕ)
3130biimpri 217 . . . . . . . . . . . . . . 15 ((#‘𝑃) ∈ ℕ → 0 ∈ (0..^(#‘𝑃)))
32 eleq1 2676 . . . . . . . . . . . . . . 15 (𝐼 = 0 → (𝐼 ∈ (0..^(#‘𝑃)) ↔ 0 ∈ (0..^(#‘𝑃))))
3331, 32syl5ibr 235 . . . . . . . . . . . . . 14 (𝐼 = 0 → ((#‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(#‘𝑃))))
34 pthd.r . . . . . . . . . . . . . . . 16 𝑅 = ((#‘𝑃) − 1)
35 fzo0end 12426 . . . . . . . . . . . . . . . 16 ((#‘𝑃) ∈ ℕ → ((#‘𝑃) − 1) ∈ (0..^(#‘𝑃)))
3634, 35syl5eqel 2692 . . . . . . . . . . . . . . 15 ((#‘𝑃) ∈ ℕ → 𝑅 ∈ (0..^(#‘𝑃)))
37 eleq1 2676 . . . . . . . . . . . . . . 15 (𝐼 = 𝑅 → (𝐼 ∈ (0..^(#‘𝑃)) ↔ 𝑅 ∈ (0..^(#‘𝑃))))
3836, 37syl5ibr 235 . . . . . . . . . . . . . 14 (𝐼 = 𝑅 → ((#‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(#‘𝑃))))
3933, 38jaoi 393 . . . . . . . . . . . . 13 ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((#‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(#‘𝑃))))
4039impcom 445 . . . . . . . . . . . 12 (((#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(#‘𝑃)))
41403adant1 1072 . . . . . . . . . . 11 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(#‘𝑃)))
4241adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ∈ (0..^(#‘𝑃)))
43 neeq1 2844 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖𝑗𝐼𝑗))
44 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑃𝑖) = (𝑃𝐼))
4544neeq1d 2841 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑃𝑖) ≠ (𝑃𝑗) ↔ (𝑃𝐼) ≠ (𝑃𝑗)))
4643, 45imbi12d 333 . . . . . . . . . . 11 (𝑖 = 𝐼 → ((𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) ↔ (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4746rspcv 3278 . . . . . . . . . 10 (𝐼 ∈ (0..^(#‘𝑃)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4842, 47syl 17 . . . . . . . . 9 (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝐼𝑗 → (𝑃𝐼) ≠ (𝑃𝑗))))
4929, 48mpid 43 . . . . . . . 8 (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → (𝑃𝐼) ≠ (𝑃𝑗)))
50 nesym 2838 . . . . . . . 8 ((𝑃𝐼) ≠ (𝑃𝑗) ↔ ¬ (𝑃𝑗) = (𝑃𝐼))
5149, 50syl6ib 240 . . . . . . 7 (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ¬ (𝑃𝑗) = (𝑃𝐼)))
5251ralimdva 2945 . . . . . 6 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(#‘𝑃))(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
533, 52syl5bi 231 . . . . 5 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖𝑗 → (𝑃𝑖) ≠ (𝑃𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼)))
542, 53mpd 15 . . . 4 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼))
55 ralnex 2975 . . . 4 (∀𝑗 ∈ (1..^𝑅) ¬ (𝑃𝑗) = (𝑃𝐼) ↔ ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
5654, 55sylib 207 . . 3 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
57 pthd.p . . . . . 6 (𝜑𝑃 ∈ Word V)
58 wrdf 13165 . . . . . 6 (𝑃 ∈ Word V → 𝑃:(0..^(#‘𝑃))⟶V)
59 ffun 5961 . . . . . 6 (𝑃:(0..^(#‘𝑃))⟶V → Fun 𝑃)
6057, 58, 593syl 18 . . . . 5 (𝜑 → Fun 𝑃)
61603ad2ant1 1075 . . . 4 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → Fun 𝑃)
62 fvelima 6158 . . . . 5 ((Fun 𝑃 ∧ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅))) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼))
6362ex 449 . . . 4 (Fun 𝑃 → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6461, 63syl 17 . . 3 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃𝑗) = (𝑃𝐼)))
6556, 64mtod 188 . 2 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
66 df-nel 2783 . 2 ((𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)) ↔ ¬ (𝑃𝐼) ∈ (𝑃 “ (1..^𝑅)))
6765, 66sylibr 223 1 ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃𝐼) ∉ (𝑃 “ (1..^𝑅)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∉ wnel 2781  ∀wral 2896  ∃wrex 2897  Vcvv 3173   class class class wbr 4583   “ cima 5041  Fun wfun 5798  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  ..^cfzo 12334  #chash 12979  Word cword 13146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154 This theorem is referenced by:  pthdlem2  40974
 Copyright terms: Public domain W3C validator