Proof of Theorem pthdlem2lem
Step | Hyp | Ref
| Expression |
1 | | pthd.s |
. . . . . 6
⊢ (𝜑 → ∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
2 | 1 | 3ad2ant1 1075 |
. . . . 5
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
3 | | ralcom 3079 |
. . . . . 6
⊢
(∀𝑖 ∈
(0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ ∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(#‘𝑃))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) |
4 | | elfzo1 12385 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1..^𝑅) ↔ (𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅)) |
5 | | nnne0 10930 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → 𝑗 ≠ 0) |
6 | 5 | necomd 2837 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → 0 ≠
𝑗) |
7 | 6 | 3ad2ant1 1075 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 0 ≠ 𝑗) |
8 | 4, 7 | sylbi 206 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1..^𝑅) → 0 ≠ 𝑗) |
9 | 8 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((#‘𝑃) ∈
ℕ ∧ 𝑗 ∈
(1..^𝑅)) → 0 ≠
𝑗) |
10 | | neeq1 2844 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 = 0 → (𝐼 ≠ 𝑗 ↔ 0 ≠ 𝑗)) |
11 | 9, 10 | syl5ibr 235 |
. . . . . . . . . . . . . 14
⊢ (𝐼 = 0 → (((#‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ≠ 𝑗)) |
12 | 11 | expd 451 |
. . . . . . . . . . . . 13
⊢ (𝐼 = 0 → ((#‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼 ≠ 𝑗))) |
13 | | nnre 10904 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
14 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑗 ∈
ℝ) |
15 | | nnre 10904 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ ℕ → 𝑅 ∈
ℝ) |
16 | 15 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → 𝑅 ∈
ℝ) |
17 | 14, 16 | ltlend 10061 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅 ↔ (𝑗 ≤ 𝑅 ∧ 𝑅 ≠ 𝑗))) |
18 | | simpr 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ≤ 𝑅 ∧ 𝑅 ≠ 𝑗) → 𝑅 ≠ 𝑗) |
19 | 17, 18 | syl6bi 242 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ) → (𝑗 < 𝑅 → 𝑅 ≠ 𝑗)) |
20 | 19 | 3impia 1253 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ ∧ 𝑅 ∈ ℕ ∧ 𝑗 < 𝑅) → 𝑅 ≠ 𝑗) |
21 | 4, 20 | sylbi 206 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1..^𝑅) → 𝑅 ≠ 𝑗) |
22 | 21 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((#‘𝑃) ∈
ℕ ∧ 𝑗 ∈
(1..^𝑅)) → 𝑅 ≠ 𝑗) |
23 | | neeq1 2844 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 = 𝑅 → (𝐼 ≠ 𝑗 ↔ 𝑅 ≠ 𝑗)) |
24 | 22, 23 | syl5ibr 235 |
. . . . . . . . . . . . . 14
⊢ (𝐼 = 𝑅 → (((#‘𝑃) ∈ ℕ ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ≠ 𝑗)) |
25 | 24 | expd 451 |
. . . . . . . . . . . . 13
⊢ (𝐼 = 𝑅 → ((#‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼 ≠ 𝑗))) |
26 | 12, 25 | jaoi 393 |
. . . . . . . . . . . 12
⊢ ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((#‘𝑃) ∈ ℕ → (𝑗 ∈ (1..^𝑅) → 𝐼 ≠ 𝑗))) |
27 | 26 | impcom 445 |
. . . . . . . . . . 11
⊢
(((#‘𝑃) ∈
ℕ ∧ (𝐼 = 0 ∨
𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼 ≠ 𝑗)) |
28 | 27 | 3adant1 1072 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑗 ∈ (1..^𝑅) → 𝐼 ≠ 𝑗)) |
29 | 28 | imp 444 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ≠ 𝑗) |
30 | | lbfzo0 12375 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
(0..^(#‘𝑃)) ↔
(#‘𝑃) ∈
ℕ) |
31 | 30 | biimpri 217 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝑃) ∈
ℕ → 0 ∈ (0..^(#‘𝑃))) |
32 | | eleq1 2676 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 = 0 → (𝐼 ∈ (0..^(#‘𝑃)) ↔ 0 ∈ (0..^(#‘𝑃)))) |
33 | 31, 32 | syl5ibr 235 |
. . . . . . . . . . . . . 14
⊢ (𝐼 = 0 → ((#‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(#‘𝑃)))) |
34 | | pthd.r |
. . . . . . . . . . . . . . . 16
⊢ 𝑅 = ((#‘𝑃) − 1) |
35 | | fzo0end 12426 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝑃) ∈
ℕ → ((#‘𝑃)
− 1) ∈ (0..^(#‘𝑃))) |
36 | 34, 35 | syl5eqel 2692 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝑃) ∈
ℕ → 𝑅 ∈
(0..^(#‘𝑃))) |
37 | | eleq1 2676 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 = 𝑅 → (𝐼 ∈ (0..^(#‘𝑃)) ↔ 𝑅 ∈ (0..^(#‘𝑃)))) |
38 | 36, 37 | syl5ibr 235 |
. . . . . . . . . . . . . 14
⊢ (𝐼 = 𝑅 → ((#‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(#‘𝑃)))) |
39 | 33, 38 | jaoi 393 |
. . . . . . . . . . . . 13
⊢ ((𝐼 = 0 ∨ 𝐼 = 𝑅) → ((#‘𝑃) ∈ ℕ → 𝐼 ∈ (0..^(#‘𝑃)))) |
40 | 39 | impcom 445 |
. . . . . . . . . . . 12
⊢
(((#‘𝑃) ∈
ℕ ∧ (𝐼 = 0 ∨
𝐼 = 𝑅)) → 𝐼 ∈ (0..^(#‘𝑃))) |
41 | 40 | 3adant1 1072 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → 𝐼 ∈ (0..^(#‘𝑃))) |
42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → 𝐼 ∈ (0..^(#‘𝑃))) |
43 | | neeq1 2844 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (𝑖 ≠ 𝑗 ↔ 𝐼 ≠ 𝑗)) |
44 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → (𝑃‘𝑖) = (𝑃‘𝐼)) |
45 | 44 | neeq1d 2841 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → ((𝑃‘𝑖) ≠ (𝑃‘𝑗) ↔ (𝑃‘𝐼) ≠ (𝑃‘𝑗))) |
46 | 43, 45 | imbi12d 333 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → ((𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) ↔ (𝐼 ≠ 𝑗 → (𝑃‘𝐼) ≠ (𝑃‘𝑗)))) |
47 | 46 | rspcv 3278 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (0..^(#‘𝑃)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → (𝐼 ≠ 𝑗 → (𝑃‘𝐼) ≠ (𝑃‘𝑗)))) |
48 | 42, 47 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → (𝐼 ≠ 𝑗 → (𝑃‘𝐼) ≠ (𝑃‘𝑗)))) |
49 | 29, 48 | mpid 43 |
. . . . . . . 8
⊢ (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → (𝑃‘𝐼) ≠ (𝑃‘𝑗))) |
50 | | nesym 2838 |
. . . . . . . 8
⊢ ((𝑃‘𝐼) ≠ (𝑃‘𝑗) ↔ ¬ (𝑃‘𝑗) = (𝑃‘𝐼)) |
51 | 49, 50 | syl6ib 240 |
. . . . . . 7
⊢ (((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) ∧ 𝑗 ∈ (1..^𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → ¬ (𝑃‘𝑗) = (𝑃‘𝐼))) |
52 | 51 | ralimdva 2945 |
. . . . . 6
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑗 ∈ (1..^𝑅)∀𝑖 ∈ (0..^(#‘𝑃))(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃‘𝑗) = (𝑃‘𝐼))) |
53 | 3, 52 | syl5bi 231 |
. . . . 5
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (∀𝑖 ∈ (0..^(#‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃‘𝑗) = (𝑃‘𝐼))) |
54 | 2, 53 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ∀𝑗 ∈ (1..^𝑅) ¬ (𝑃‘𝑗) = (𝑃‘𝐼)) |
55 | | ralnex 2975 |
. . . 4
⊢
(∀𝑗 ∈
(1..^𝑅) ¬ (𝑃‘𝑗) = (𝑃‘𝐼) ↔ ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃‘𝑗) = (𝑃‘𝐼)) |
56 | 54, 55 | sylib 207 |
. . 3
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ ∃𝑗 ∈ (1..^𝑅)(𝑃‘𝑗) = (𝑃‘𝐼)) |
57 | | pthd.p |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Word V) |
58 | | wrdf 13165 |
. . . . . 6
⊢ (𝑃 ∈ Word V → 𝑃:(0..^(#‘𝑃))⟶V) |
59 | | ffun 5961 |
. . . . . 6
⊢ (𝑃:(0..^(#‘𝑃))⟶V → Fun 𝑃) |
60 | 57, 58, 59 | 3syl 18 |
. . . . 5
⊢ (𝜑 → Fun 𝑃) |
61 | 60 | 3ad2ant1 1075 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → Fun 𝑃) |
62 | | fvelima 6158 |
. . . . 5
⊢ ((Fun
𝑃 ∧ (𝑃‘𝐼) ∈ (𝑃 “ (1..^𝑅))) → ∃𝑗 ∈ (1..^𝑅)(𝑃‘𝑗) = (𝑃‘𝐼)) |
63 | 62 | ex 449 |
. . . 4
⊢ (Fun
𝑃 → ((𝑃‘𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃‘𝑗) = (𝑃‘𝐼))) |
64 | 61, 63 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ((𝑃‘𝐼) ∈ (𝑃 “ (1..^𝑅)) → ∃𝑗 ∈ (1..^𝑅)(𝑃‘𝑗) = (𝑃‘𝐼))) |
65 | 56, 64 | mtod 188 |
. 2
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → ¬ (𝑃‘𝐼) ∈ (𝑃 “ (1..^𝑅))) |
66 | | df-nel 2783 |
. 2
⊢ ((𝑃‘𝐼) ∉ (𝑃 “ (1..^𝑅)) ↔ ¬ (𝑃‘𝐼) ∈ (𝑃 “ (1..^𝑅))) |
67 | 65, 66 | sylibr 223 |
1
⊢ ((𝜑 ∧ (#‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃‘𝐼) ∉ (𝑃 “ (1..^𝑅))) |