MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcldmpt Structured version   Visualization version   GIF version

Theorem ptcldmpt 21227
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcldmpt.a (𝜑𝐴𝑉)
ptcldmpt.j ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
ptcldmpt.c ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
ptcldmpt (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝐽(𝑘)   𝑉(𝑘)

Proof of Theorem ptcldmpt
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . 3 𝑙𝐶
2 nfcsb1v 3515 . . 3 𝑘𝑙 / 𝑘𝐶
3 csbeq1a 3508 . . 3 (𝑘 = 𝑙𝐶 = 𝑙 / 𝑘𝐶)
41, 2, 3cbvixp 7811 . 2 X𝑘𝐴 𝐶 = X𝑙𝐴 𝑙 / 𝑘𝐶
5 ptcldmpt.a . . 3 (𝜑𝐴𝑉)
6 ptcldmpt.j . . . 4 ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
7 eqid 2610 . . . 4 (𝑘𝐴𝐽) = (𝑘𝐴𝐽)
86, 7fmptd 6292 . . 3 (𝜑 → (𝑘𝐴𝐽):𝐴⟶Top)
9 nfv 1830 . . . . 5 𝑘(𝜑𝑙𝐴)
10 nfcv 2751 . . . . . . 7 𝑘Clsd
11 nffvmpt1 6111 . . . . . . 7 𝑘((𝑘𝐴𝐽)‘𝑙)
1210, 11nffv 6110 . . . . . 6 𝑘(Clsd‘((𝑘𝐴𝐽)‘𝑙))
132, 12nfel 2763 . . . . 5 𝑘𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))
149, 13nfim 1813 . . . 4 𝑘((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
15 eleq1 2676 . . . . . 6 (𝑘 = 𝑙 → (𝑘𝐴𝑙𝐴))
1615anbi2d 736 . . . . 5 (𝑘 = 𝑙 → ((𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴)))
17 fveq2 6103 . . . . . . 7 (𝑘 = 𝑙 → ((𝑘𝐴𝐽)‘𝑘) = ((𝑘𝐴𝐽)‘𝑙))
1817fveq2d 6107 . . . . . 6 (𝑘 = 𝑙 → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
193, 18eleq12d 2682 . . . . 5 (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)) ↔ 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))))
2016, 19imbi12d 333 . . . 4 (𝑘 = 𝑙 → (((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘))) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))))
21 ptcldmpt.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
22 simpr 476 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝐴)
237fvmpt2 6200 . . . . . . 7 ((𝑘𝐴𝐽 ∈ Top) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2422, 6, 23syl2anc 691 . . . . . 6 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2524fveq2d 6107 . . . . 5 ((𝜑𝑘𝐴) → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘𝐽))
2621, 25eleqtrrd 2691 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)))
2714, 20, 26chvar 2250 . . 3 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
285, 8, 27ptcld 21226 . 2 (𝜑X𝑙𝐴 𝑙 / 𝑘𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
294, 28syl5eqel 2692 1 (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  csb 3499  cmpt 4643  cfv 5804  Xcixp 7794  tcpt 15922  Topctop 20517  Clsdccld 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ixp 7795  df-en 7842  df-fin 7845  df-fi 8200  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-cld 20633
This theorem is referenced by:  ptclsg  21228  kelac1  36651
  Copyright terms: Public domain W3C validator