Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptbasid | Structured version Visualization version GIF version |
Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
Ref | Expression |
---|---|
ptbas.1 | ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
Ref | Expression |
---|---|
ptbasid | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptbas.1 | . 2 ⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | |
2 | simpl 472 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐴 ∈ 𝑉) | |
3 | 0fin 8073 | . . 3 ⊢ ∅ ∈ Fin | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∅ ∈ Fin) |
5 | ffvelrn 6265 | . . . 4 ⊢ ((𝐹:𝐴⟶Top ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) | |
6 | 5 | adantll 746 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) |
7 | eqid 2610 | . . . 4 ⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) | |
8 | 7 | topopn 20536 | . . 3 ⊢ ((𝐹‘𝑘) ∈ Top → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
9 | 6, 8 | syl 17 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ 𝐴) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
10 | eqidd 2611 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ 𝑘 ∈ (𝐴 ∖ ∅)) → ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘)) | |
11 | 1, 2, 4, 9, 10 | elptr2 21187 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∃wex 1695 ∈ wcel 1977 {cab 2596 ∀wral 2896 ∃wrex 2897 ∖ cdif 3537 ∅c0 3874 ∪ cuni 4372 Fn wfn 5799 ⟶wf 5800 ‘cfv 5804 Xcixp 7794 Fincfn 7841 Topctop 20517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-ixp 7795 df-en 7842 df-fin 7845 df-top 20521 |
This theorem is referenced by: ptuni2 21189 ptbasfi 21194 |
Copyright terms: Public domain | W3C validator |