Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasid Structured version   Visualization version   GIF version

Theorem ptbasid 21188
 Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasid ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦,𝑘,𝑧,𝐴   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptbasid
StepHypRef Expression
1 ptbas.1 . 2 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2 simpl 472 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐴𝑉)
3 0fin 8073 . . 3 ∅ ∈ Fin
43a1i 11 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ∅ ∈ Fin)
5 ffvelrn 6265 . . . 4 ((𝐹:𝐴⟶Top ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
65adantll 746 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
7 eqid 2610 . . . 4 (𝐹𝑘) = (𝐹𝑘)
87topopn 20536 . . 3 ((𝐹𝑘) ∈ Top → (𝐹𝑘) ∈ (𝐹𝑘))
96, 8syl 17 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ (𝐹𝑘))
10 eqidd 2611 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ 𝑘 ∈ (𝐴 ∖ ∅)) → (𝐹𝑘) = (𝐹𝑘))
111, 2, 4, 9, 10elptr2 21187 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897   ∖ cdif 3537  ∅c0 3874  ∪ cuni 4372   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  Xcixp 7794  Fincfn 7841  Topctop 20517 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-ixp 7795  df-en 7842  df-fin 7845  df-top 20521 This theorem is referenced by:  ptuni2  21189  ptbasfi  21194
 Copyright terms: Public domain W3C validator