Step | Hyp | Ref
| Expression |
1 | | elex 3185 |
. 2
⊢ (𝐾 ∈ 𝐵 → 𝐾 ∈ V) |
2 | | psubspset.s |
. . 3
⊢ 𝑆 = (PSubSp‘𝐾) |
3 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) |
4 | | psubspset.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
5 | 3, 4 | syl6eqr 2662 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
6 | 5 | sseq2d 3596 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑠 ⊆ (Atoms‘𝑘) ↔ 𝑠 ⊆ 𝐴)) |
7 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾)) |
8 | | psubspset.j |
. . . . . . . . . . . . 13
⊢ ∨ =
(join‘𝐾) |
9 | 7, 8 | syl6eqr 2662 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (join‘𝑘) = ∨ ) |
10 | 9 | oveqd 6566 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (𝑝(join‘𝑘)𝑞) = (𝑝 ∨ 𝑞)) |
11 | 10 | breq2d 4595 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟(le‘𝑘)(𝑝 ∨ 𝑞))) |
12 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) |
13 | | psubspset.l |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝐾) |
14 | 12, 13 | syl6eqr 2662 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
15 | 14 | breqd 4594 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝 ∨ 𝑞) ↔ 𝑟 ≤ (𝑝 ∨ 𝑞))) |
16 | 11, 15 | bitrd 267 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) ↔ 𝑟 ≤ (𝑝 ∨ 𝑞))) |
17 | 16 | imbi1d 330 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) ↔ (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))) |
18 | 5, 17 | raleqbidv 3129 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) ↔ ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))) |
19 | 18 | 2ralbidv 2972 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠) ↔ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))) |
20 | 6, 19 | anbi12d 743 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠)) ↔ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠)))) |
21 | 20 | abbidv 2728 |
. . . 4
⊢ (𝑘 = 𝐾 → {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))} = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))}) |
22 | | df-psubsp 33807 |
. . . 4
⊢ PSubSp =
(𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) |
23 | | fvex 6113 |
. . . . . . 7
⊢
(Atoms‘𝐾)
∈ V |
24 | 4, 23 | eqeltri 2684 |
. . . . . 6
⊢ 𝐴 ∈ V |
25 | 24 | pwex 4774 |
. . . . 5
⊢ 𝒫
𝐴 ∈ V |
26 | | selpw 4115 |
. . . . . . . 8
⊢ (𝑠 ∈ 𝒫 𝐴 ↔ 𝑠 ⊆ 𝐴) |
27 | 26 | anbi1i 727 |
. . . . . . 7
⊢ ((𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠)) ↔ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))) |
28 | 27 | abbii 2726 |
. . . . . 6
⊢ {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))} = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))} |
29 | | ssab2 3649 |
. . . . . 6
⊢ {𝑠 ∣ (𝑠 ∈ 𝒫 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))} ⊆ 𝒫 𝐴 |
30 | 28, 29 | eqsstr3i 3599 |
. . . . 5
⊢ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))} ⊆ 𝒫 𝐴 |
31 | 25, 30 | ssexi 4731 |
. . . 4
⊢ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))} ∈ V |
32 | 21, 22, 31 | fvmpt 6191 |
. . 3
⊢ (𝐾 ∈ V →
(PSubSp‘𝐾) = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))}) |
33 | 2, 32 | syl5eq 2656 |
. 2
⊢ (𝐾 ∈ V → 𝑆 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))}) |
34 | 1, 33 | syl 17 |
1
⊢ (𝐾 ∈ 𝐵 → 𝑆 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ 𝐴 (𝑟 ≤ (𝑝 ∨ 𝑞) → 𝑟 ∈ 𝑠))}) |