MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglesupp Structured version   Visualization version   GIF version

Theorem psrbaglesupp 19189
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesupp ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglesupp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frnnn0supp 11226 . . 3 ((𝐼𝑉𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
213ad2antr2 1220 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 supp 0) = (𝐺 “ ℕ))
3 simpr2 1061 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺:𝐼⟶ℕ0)
4 eldifi 3694 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ)) → 𝑥𝐼)
5 simpr3 1062 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺𝑟𝐹)
6 ffn 5958 . . . . . . . . . 10 (𝐺:𝐼⟶ℕ0𝐺 Fn 𝐼)
73, 6syl 17 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺 Fn 𝐼)
8 psrbag.d . . . . . . . . . . . 12 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbagf 19186 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
1093ad2antr1 1219 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹:𝐼⟶ℕ0)
11 ffn 5958 . . . . . . . . . 10 (𝐹:𝐼⟶ℕ0𝐹 Fn 𝐼)
1210, 11syl 17 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹 Fn 𝐼)
13 simpl 472 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐼𝑉)
14 inidm 3784 . . . . . . . . 9 (𝐼𝐼) = 𝐼
15 eqidd 2611 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
16 eqidd 2611 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
177, 12, 13, 13, 14, 15, 16ofrfval 6803 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺𝑟𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
185, 17mpbid 221 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1918r19.21bi 2916 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
204, 19sylan2 490 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ (𝐹𝑥))
2113, 10jca 553 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
22 frnnn0supp 11226 . . . . . . 7 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
23 eqimss 3620 . . . . . . 7 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
2421, 22, 233syl 18 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
25 c0ex 9913 . . . . . . 7 0 ∈ V
2625a1i 11 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 0 ∈ V)
2710, 24, 13, 26suppssr 7213 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
2820, 27breqtrd 4609 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ 0)
29 ffvelrn 6265 . . . . . 6 ((𝐺:𝐼⟶ℕ0𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
303, 4, 29syl2an 493 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℕ0)
3130nn0ge0d 11231 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → 0 ≤ (𝐺𝑥))
3230nn0red 11229 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℝ)
33 0re 9919 . . . . 5 0 ∈ ℝ
34 letri3 10002 . . . . 5 (((𝐺𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3532, 33, 34sylancl 693 . . . 4 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3628, 31, 35mpbir2and 959 . . 3 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) = 0)
373, 36suppss 7212 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 supp 0) ⊆ (𝐹 “ ℕ))
382, 37eqsstr3d 3603 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  wss 3540   class class class wbr 4583  ccnv 5037  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑟 cofr 6794   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841  cr 9814  0cc0 9815  cle 9954  cn 10897  0cn0 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-ofr 6796  df-om 6958  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170
This theorem is referenced by:  psrbaglecl  19190  psrbagcon  19192
  Copyright terms: Public domain W3C validator