Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psr1baslem | Structured version Visualization version GIF version |
Description: The set of finite bags on 1𝑜 is just the set of all functions from 1𝑜 to ℕ0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
psr1baslem | ⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 3096 | . 2 ⊢ ((ℕ0 ↑𝑚 1𝑜) = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0 ↑𝑚 1𝑜)(◡𝑓 “ ℕ) ∈ Fin) | |
2 | df1o2 7459 | . . . 4 ⊢ 1𝑜 = {∅} | |
3 | snfi 7923 | . . . 4 ⊢ {∅} ∈ Fin | |
4 | 2, 3 | eqeltri 2684 | . . 3 ⊢ 1𝑜 ∈ Fin |
5 | cnvimass 5404 | . . . 4 ⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 | |
6 | elmapi 7765 | . . . . 5 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) → 𝑓:1𝑜⟶ℕ0) | |
7 | fdm 5964 | . . . . 5 ⊢ (𝑓:1𝑜⟶ℕ0 → dom 𝑓 = 1𝑜) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) → dom 𝑓 = 1𝑜) |
9 | 5, 8 | syl5sseq 3616 | . . 3 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) → (◡𝑓 “ ℕ) ⊆ 1𝑜) |
10 | ssfi 8065 | . . 3 ⊢ ((1𝑜 ∈ Fin ∧ (◡𝑓 “ ℕ) ⊆ 1𝑜) → (◡𝑓 “ ℕ) ∈ Fin) | |
11 | 4, 9, 10 | sylancr 694 | . 2 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) → (◡𝑓 “ ℕ) ∈ Fin) |
12 | 1, 11 | mprgbir 2911 | 1 ⊢ (ℕ0 ↑𝑚 1𝑜) = {𝑓 ∈ (ℕ0 ↑𝑚 1𝑜) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 {crab 2900 ⊆ wss 3540 ∅c0 3874 {csn 4125 ◡ccnv 5037 dom cdm 5038 “ cima 5041 ⟶wf 5800 (class class class)co 6549 1𝑜c1o 7440 ↑𝑚 cmap 7744 Fincfn 7841 ℕcn 10897 ℕ0cn0 11169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-1o 7447 df-er 7629 df-map 7746 df-en 7842 df-fin 7845 |
This theorem is referenced by: psr1bas 19382 ply1basf 19393 ply1plusgfvi 19433 coe1z 19454 coe1mul2 19460 coe1tm 19464 ply1coe 19487 deg1ldg 23656 deg1leb 23659 deg1val 23660 |
Copyright terms: Public domain | W3C validator |