MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem4 Structured version   Visualization version   GIF version

Theorem psgnunilem4 17740
Description: Lemma for psgnuni 17742. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem4.g 𝐺 = (SymGrp‘𝐷)
psgnunilem4.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem4.d (𝜑𝐷𝑉)
psgnunilem4.w1 (𝜑𝑊 ∈ Word 𝑇)
psgnunilem4.w2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
Assertion
Ref Expression
psgnunilem4 (𝜑 → (-1↑(#‘𝑊)) = 1)

Proof of Theorem psgnunilem4
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem4.w1 . 2 (𝜑𝑊 ∈ Word 𝑇)
2 psgnunilem4.w2 . 2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
3 wrdfin 13178 . . . . 5 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
4 hashcl 13009 . . . . 5 (𝑊 ∈ Fin → (#‘𝑊) ∈ ℕ0)
51, 3, 43syl 18 . . . 4 (𝜑 → (#‘𝑊) ∈ ℕ0)
6 nn0uz 11598 . . . 4 0 = (ℤ‘0)
75, 6syl6eleq 2698 . . 3 (𝜑 → (#‘𝑊) ∈ (ℤ‘0))
8 fveq2 6103 . . . . . . . . 9 (𝑤 = ∅ → (#‘𝑤) = (#‘∅))
9 hash0 13019 . . . . . . . . 9 (#‘∅) = 0
108, 9syl6eq 2660 . . . . . . . 8 (𝑤 = ∅ → (#‘𝑤) = 0)
1110oveq2d 6565 . . . . . . 7 (𝑤 = ∅ → (-1↑(#‘𝑤)) = (-1↑0))
12 neg1cn 11001 . . . . . . . 8 -1 ∈ ℂ
13 exp0 12726 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
1412, 13ax-mp 5 . . . . . . 7 (-1↑0) = 1
1511, 14syl6eq 2660 . . . . . 6 (𝑤 = ∅ → (-1↑(#‘𝑤)) = 1)
16152a1d 26 . . . . 5 (𝑤 = ∅ → ((𝜑 ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1)))
17 psgnunilem4.g . . . . . . . . . . . . 13 𝐺 = (SymGrp‘𝐷)
18 psgnunilem4.t . . . . . . . . . . . . 13 𝑇 = ran (pmTrsp‘𝐷)
19 simpl1 1057 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝜑)
20 psgnunilem4.d . . . . . . . . . . . . . 14 (𝜑𝐷𝑉)
2119, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝐷𝑉)
22 simpl3l 1109 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
23 eqidd 2611 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (#‘𝑤) = (#‘𝑤))
24 wrdfin 13178 . . . . . . . . . . . . . . 15 (𝑤 ∈ Word 𝑇𝑤 ∈ Fin)
2522, 24syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
26 simpl2 1058 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
27 hashnncl 13018 . . . . . . . . . . . . . . 15 (𝑤 ∈ Fin → ((#‘𝑤) ∈ ℕ ↔ 𝑤 ≠ ∅))
2827biimpar 501 . . . . . . . . . . . . . 14 ((𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → (#‘𝑤) ∈ ℕ)
2925, 26, 28syl2anc 691 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (#‘𝑤) ∈ ℕ)
30 simpl3r 1110 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (𝐺 Σg 𝑤) = ( I ↾ 𝐷))
31 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦))
3231eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((#‘𝑥) = ((#‘𝑤) − 2) ↔ (#‘𝑦) = ((#‘𝑤) − 2)))
33 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦))
3433eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3532, 34anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))))
3635cbvrexv 3148 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3736notbii 309 . . . . . . . . . . . . . . 15 (¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3837biimpi 205 . . . . . . . . . . . . . 14 (¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3938adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
4017, 18, 21, 22, 23, 29, 30, 39psgnunilem3 17739 . . . . . . . . . . . 12 ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
41 iman 439 . . . . . . . . . . . 12 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ↔ ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4240, 41mpbir 220 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
43 df-rex 2902 . . . . . . . . . . 11 (∃𝑥 ∈ Word 𝑇((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4442, 43sylib 207 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
45 simprl 790 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 𝑥 ∈ Word 𝑇)
46 simprrr 801 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
4745, 46jca 553 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
48 wrdfin 13178 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word 𝑇𝑥 ∈ Fin)
49 hashcl 13009 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0)
5045, 48, 493syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) ∈ ℕ0)
51 simp3l 1082 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
5251, 24syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
53 simp2 1055 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
5452, 53, 28syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (#‘𝑤) ∈ ℕ)
5554adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑤) ∈ ℕ)
56 simprrl 800 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) = ((#‘𝑤) − 2))
5755nnred 10912 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑤) ∈ ℝ)
58 2rp 11713 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
59 ltsubrp 11742 . . . . . . . . . . . . . . . . . . 19 (((#‘𝑤) ∈ ℝ ∧ 2 ∈ ℝ+) → ((#‘𝑤) − 2) < (#‘𝑤))
6057, 58, 59sylancl 693 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((#‘𝑤) − 2) < (#‘𝑤))
6156, 60eqbrtrd 4605 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) < (#‘𝑤))
62 elfzo0 12376 . . . . . . . . . . . . . . . . 17 ((#‘𝑥) ∈ (0..^(#‘𝑤)) ↔ ((#‘𝑥) ∈ ℕ0 ∧ (#‘𝑤) ∈ ℕ ∧ (#‘𝑥) < (#‘𝑤)))
6350, 55, 61, 62syl3anbrc 1239 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑥) ∈ (0..^(#‘𝑤)))
64 id 22 . . . . . . . . . . . . . . . . 17 (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → ((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)))
6564com13 86 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ((#‘𝑥) ∈ (0..^(#‘𝑤)) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → (-1↑(#‘𝑥)) = 1)))
6647, 63, 65sylc 63 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → (-1↑(#‘𝑥)) = 1))
6756oveq2d 6565 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(#‘𝑥)) = (-1↑((#‘𝑤) − 2)))
6812a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ∈ ℂ)
69 neg1ne0 11003 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
7069a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ≠ 0)
71 2z 11286 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 2 ∈ ℤ)
7355nnzd 11357 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (#‘𝑤) ∈ ℤ)
7468, 70, 72, 73expsubd 12881 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑((#‘𝑤) − 2)) = ((-1↑(#‘𝑤)) / (-1↑2)))
75 neg1sqe1 12821 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
7675oveq2i 6560 . . . . . . . . . . . . . . . . . 18 ((-1↑(#‘𝑤)) / (-1↑2)) = ((-1↑(#‘𝑤)) / 1)
77 m1expcl 12745 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑤) ∈ ℤ → (-1↑(#‘𝑤)) ∈ ℤ)
7877zcnd 11359 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑤) ∈ ℤ → (-1↑(#‘𝑤)) ∈ ℂ)
7973, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(#‘𝑤)) ∈ ℂ)
8079div1d 10672 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(#‘𝑤)) / 1) = (-1↑(#‘𝑤)))
8176, 80syl5eq 2656 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(#‘𝑤)) / (-1↑2)) = (-1↑(#‘𝑤)))
8267, 74, 813eqtrd 2648 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(#‘𝑥)) = (-1↑(#‘𝑤)))
8382eqeq1d 2612 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(#‘𝑥)) = 1 ↔ (-1↑(#‘𝑤)) = 1))
8466, 83sylibd 228 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → (-1↑(#‘𝑤)) = 1))
8584ex 449 . . . . . . . . . . . . 13 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ((𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → (-1↑(#‘𝑤)) = 1)))
8685com23 84 . . . . . . . . . . . 12 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → ((𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(#‘𝑤)) = 1)))
8786alimdv 1832 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → ∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(#‘𝑤)) = 1)))
88 19.23v 1889 . . . . . . . . . . 11 (∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(#‘𝑤)) = 1) ↔ (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(#‘𝑤)) = 1))
8987, 88syl6ib 240 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((#‘𝑥) = ((#‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(#‘𝑤)) = 1)))
9044, 89mpid 43 . . . . . . . . 9 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → (-1↑(#‘𝑤)) = 1))
91903exp 1256 . . . . . . . 8 (𝜑 → (𝑤 ≠ ∅ → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → (-1↑(#‘𝑤)) = 1))))
9291com34 89 . . . . . . 7 (𝜑 → (𝑤 ≠ ∅ → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1))))
9392com12 32 . . . . . 6 (𝑤 ≠ ∅ → (𝜑 → (∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1))))
9493impd 446 . . . . 5 (𝑤 ≠ ∅ → ((𝜑 ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1)))
9516, 94pm2.61ine 2865 . . . 4 ((𝜑 ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1))
96953adant2 1073 . . 3 ((𝜑 ∧ (#‘𝑤) ∈ (0...(#‘𝑊)) ∧ ∀𝑥((#‘𝑥) ∈ (0..^(#‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1))
97 eleq1 2676 . . . . 5 (𝑤 = 𝑥 → (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇))
98 oveq2 6557 . . . . . 6 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
9998eqeq1d 2612 . . . . 5 (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
10097, 99anbi12d 743 . . . 4 (𝑤 = 𝑥 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
101 fveq2 6103 . . . . . 6 (𝑤 = 𝑥 → (#‘𝑤) = (#‘𝑥))
102101oveq2d 6565 . . . . 5 (𝑤 = 𝑥 → (-1↑(#‘𝑤)) = (-1↑(#‘𝑥)))
103102eqeq1d 2612 . . . 4 (𝑤 = 𝑥 → ((-1↑(#‘𝑤)) = 1 ↔ (-1↑(#‘𝑥)) = 1))
104100, 103imbi12d 333 . . 3 (𝑤 = 𝑥 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1) ↔ ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(#‘𝑥)) = 1)))
105 eleq1 2676 . . . . 5 (𝑤 = 𝑊 → (𝑤 ∈ Word 𝑇𝑊 ∈ Word 𝑇))
106 oveq2 6557 . . . . . 6 (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊))
107106eqeq1d 2612 . . . . 5 (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)))
108105, 107anbi12d 743 . . . 4 (𝑤 = 𝑊 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷))))
109 fveq2 6103 . . . . . 6 (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊))
110109oveq2d 6565 . . . . 5 (𝑤 = 𝑊 → (-1↑(#‘𝑤)) = (-1↑(#‘𝑊)))
111110eqeq1d 2612 . . . 4 (𝑤 = 𝑊 → ((-1↑(#‘𝑤)) = 1 ↔ (-1↑(#‘𝑊)) = 1))
112108, 111imbi12d 333 . . 3 (𝑤 = 𝑊 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(#‘𝑤)) = 1) ↔ ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(#‘𝑊)) = 1)))
1131, 7, 96, 104, 112, 101, 109uzindi 12643 . 2 (𝜑 → ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(#‘𝑊)) = 1))
1141, 2, 113mp2and 711 1 (𝜑 → (-1↑(#‘𝑊)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  c0 3874   class class class wbr 4583   I cid 4948  ran crn 5039  cres 5040  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  ..^cfzo 12334  cexp 12722  #chash 12979  Word cword 13146   Σg cgsu 15924  SymGrpcsymg 17620  pmTrspcpmtr 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-tset 15787  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-symg 17621  df-pmtr 17685
This theorem is referenced by:  psgnuni  17742
  Copyright terms: Public domain W3C validator