Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodss Structured version   Visualization version   GIF version

Theorem prodss 14516
 Description: Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.)
Hypotheses
Ref Expression
prodss.1 (𝜑𝐴𝐵)
prodss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
prodss.3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
prodss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
prodss.5 (𝜑𝐵 ⊆ (ℤ𝑀))
Assertion
Ref Expression
prodss (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑘,𝑛,𝑦   𝐶,𝑛,𝑦   𝑘,𝑛,𝜑,𝑦   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝑘,𝑀
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem prodss
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 476 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 prodss.3 . . . . . 6 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
43adantr 480 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))
5 prodss.1 . . . . . . 7 (𝜑𝐴𝐵)
6 prodss.5 . . . . . . 7 (𝜑𝐵 ⊆ (ℤ𝑀))
75, 6sstrd 3578 . . . . . 6 (𝜑𝐴 ⊆ (ℤ𝑀))
87adantr 480 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
9 simpr 476 . . . . . . 7 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
10 iftrue 4042 . . . . . . . . . . . 12 (𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
1110adantl 481 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
12 prodss.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1312ex 449 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
1413adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
15 eldif 3550 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
16 prodss.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)
17 ax-1cn 9873 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
1816, 17syl6eqel 2696 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
1915, 18sylan2br 492 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
2019expr 641 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
2114, 20pm2.61d 169 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2221ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
23 nfcsb1v 3515 . . . . . . . . . . . . . 14 𝑘𝑚 / 𝑘𝐶
2423nfel1 2765 . . . . . . . . . . . . 13 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
25 csbeq1a 3508 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
2625eleq1d 2672 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
2724, 26rspc 3276 . . . . . . . . . . . 12 (𝑚𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
2822, 27mpan9 485 . . . . . . . . . . 11 ((𝜑𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
2911, 28eqeltrd 2688 . . . . . . . . . 10 ((𝜑𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
30 iffalse 4045 . . . . . . . . . . . 12 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
3130, 17syl6eqel 2696 . . . . . . . . . . 11 𝑚𝐵 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3231adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3329, 32pm2.61dan 828 . . . . . . . . 9 (𝜑 → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3433adantr 480 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
3534adantr 480 . . . . . . 7 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ)
36 nfcv 2751 . . . . . . . 8 𝑘𝑚
37 nfv 1830 . . . . . . . . 9 𝑘 𝑚𝐵
38 nfcv 2751 . . . . . . . . 9 𝑘1
3937, 23, 38nfif 4065 . . . . . . . 8 𝑘if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1)
40 eleq1 2676 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘𝐵𝑚𝐵))
4140, 25ifbieq1d 4059 . . . . . . . 8 (𝑘 = 𝑚 → if(𝑘𝐵, 𝐶, 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
42 eqid 2610 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)) = (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))
4336, 39, 41, 42fvmptf 6209 . . . . . . 7 ((𝑚 ∈ (ℤ𝑀) ∧ if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
449, 35, 43syl2anc 691 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
45 iftrue 4042 . . . . . . . . . . . . . 14 (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
4645adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = ((𝑘𝐴𝐶)‘𝑚))
47 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚𝐴)
485adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 ∈ ℤ) → 𝐴𝐵)
4948sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚𝐵)
5028adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → 𝑚 / 𝑘𝐶 ∈ ℂ)
5149, 50syldan 486 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
52 eqid 2610 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
5352fvmpts 6194 . . . . . . . . . . . . . 14 ((𝑚𝐴𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5447, 51, 53syl2anc 691 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
5546, 54eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
5655ex 449 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℤ) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
5756adantr 480 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → (𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
58 iffalse 4045 . . . . . . . . . . . . . 14 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
5958adantl 481 . . . . . . . . . . . . 13 ((𝑚𝐵 ∧ ¬ 𝑚𝐴) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
6059adantl 481 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
61 eldif 3550 . . . . . . . . . . . . 13 (𝑚 ∈ (𝐵𝐴) ↔ (𝑚𝐵 ∧ ¬ 𝑚𝐴))
6216ralrimiva 2949 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
6362adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑀 ∈ ℤ) → ∀𝑘 ∈ (𝐵𝐴)𝐶 = 1)
6423nfeq1 2764 . . . . . . . . . . . . . . 15 𝑘𝑚 / 𝑘𝐶 = 1
6525eqeq1d 2612 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐶 = 1 ↔ 𝑚 / 𝑘𝐶 = 1))
6664, 65rspc 3276 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝐵𝐴) → (∀𝑘 ∈ (𝐵𝐴)𝐶 = 1 → 𝑚 / 𝑘𝐶 = 1))
6763, 66mpan9 485 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (𝐵𝐴)) → 𝑚 / 𝑘𝐶 = 1)
6861, 67sylan2br 492 . . . . . . . . . . . 12 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → 𝑚 / 𝑘𝐶 = 1)
6960, 68eqtr4d 2647 . . . . . . . . . . 11 (((𝜑𝑀 ∈ ℤ) ∧ (𝑚𝐵 ∧ ¬ 𝑚𝐴)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
7069expr 641 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → (¬ 𝑚𝐴 → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶))
7157, 70pm2.61d 169 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 𝑚 / 𝑘𝐶)
7210adantl 481 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 𝑚 / 𝑘𝐶)
7371, 72eqtr4d 2647 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
7448ssneld 3570 . . . . . . . . . . 11 ((𝜑𝑀 ∈ ℤ) → (¬ 𝑚𝐵 → ¬ 𝑚𝐴))
7574imp 444 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → ¬ 𝑚𝐴)
7675, 58syl 17 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = 1)
7730adantl 481 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) = 1)
7876, 77eqtr4d 2647 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ ¬ 𝑚𝐵) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
7973, 78pm2.61dan 828 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8079adantr 480 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8144, 80eqtr4d 2647 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐴, ((𝑘𝐴𝐶)‘𝑚), 1))
8212, 52fmptd 6292 . . . . . . 7 (𝜑 → (𝑘𝐴𝐶):𝐴⟶ℂ)
8382adantr 480 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐴𝐶):𝐴⟶ℂ)
8483ffvelrnda 6267 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) ∈ ℂ)
851, 2, 4, 8, 81, 84zprod 14506 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
866adantr 480 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
8743ancoms 468 . . . . . . 7 ((if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
8834, 87sylan 487 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
89 simpr 476 . . . . . . . . . 10 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → 𝑚𝐵)
90 eqid 2610 . . . . . . . . . . 11 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
9190fvmpts 6194 . . . . . . . . . 10 ((𝑚𝐵𝑚 / 𝑘𝐶 ∈ ℂ) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
9289, 50, 91syl2anc 691 . . . . . . . . 9 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) = 𝑚 / 𝑘𝐶)
9392ifeq1d 4054 . . . . . . . 8 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9493adantlr 747 . . . . . . 7 ((((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
95 iffalse 4045 . . . . . . . . 9 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = 1)
9695, 30eqtr4d 2647 . . . . . . . 8 𝑚𝐵 → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9796adantl 481 . . . . . . 7 ((((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐵) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9894, 97pm2.61dan 828 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1) = if(𝑚𝐵, 𝑚 / 𝑘𝐶, 1))
9988, 98eqtr4d 2647 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))‘𝑚) = if(𝑚𝐵, ((𝑘𝐵𝐶)‘𝑚), 1))
10021, 90fmptd 6292 . . . . . . 7 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
101100adantr 480 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (𝑘𝐵𝐶):𝐵⟶ℂ)
102101ffvelrnda 6267 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
1031, 2, 4, 86, 99, 102zprod 14506 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1)))))
10485, 103eqtr4d 2647 . . 3 ((𝜑𝑀 ∈ ℤ) → ∏𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
105 prodfc 14514 . . 3 𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = ∏𝑘𝐴 𝐶
106 prodfc 14514 . . 3 𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = ∏𝑘𝐵 𝐶
107104, 105, 1063eqtr3g 2667 . 2 ((𝜑𝑀 ∈ ℤ) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
1085adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴𝐵)
1096adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ (ℤ𝑀))
110 uzf 11566 . . . . . . . . . . 11 :ℤ⟶𝒫 ℤ
111110fdmi 5965 . . . . . . . . . 10 dom ℤ = ℤ
112111eleq2i 2680 . . . . . . . . 9 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
113 ndmfv 6128 . . . . . . . . 9 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
114112, 113sylnbir 320 . . . . . . . 8 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
115114adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → (ℤ𝑀) = ∅)
116109, 115sseqtrd 3604 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 ⊆ ∅)
117108, 116sstrd 3578 . . . . 5 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
118 ss0 3926 . . . . 5 (𝐴 ⊆ ∅ → 𝐴 = ∅)
119117, 118syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = ∅)
120 ss0 3926 . . . . 5 (𝐵 ⊆ ∅ → 𝐵 = ∅)
121116, 120syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐵 = ∅)
122119, 121eqtr4d 2647 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 = 𝐵)
123122prodeq1d 14490 . 2 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
124107, 123pm2.61dan 828 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ⦋csb 3499   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  ℂcc 9813  0cc0 9815  1c1 9816   · cmul 9820  ℤcz 11254  ℤ≥cuz 11563  seqcseq 12663   ⇝ cli 14063  ∏cprod 14474 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475 This theorem is referenced by:  fprodss  14517
 Copyright terms: Public domain W3C validator