Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2OLD | Structured version Visualization version GIF version |
Description: Practice problem 2. Clues: oveq12i 6561 adddiri 9930 add4i 10139 mulcli 9924 recni 9931 2re 10967 3eqtri 2636 10re 11393 5re 10976 1re 9918 4re 10974 eqcomi 2619 5p4e9 11044 oveq1i 6559 df-3 10957. (Contributed by Filip Cernatescu, 16-Mar-2019.) Obsolete version of problem2 30813 as of 9-Sep-2021. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
problem2OLD | ⊢ (((2 · 10) + 5) + ((1 · 10) + 4)) = ((3 · 10) + 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 10967 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 9931 | . . . 4 ⊢ 2 ∈ ℂ |
3 | 10reOLD 10986 | . . . . 5 ⊢ 10 ∈ ℝ | |
4 | 3 | recni 9931 | . . . 4 ⊢ 10 ∈ ℂ |
5 | 2, 4 | mulcli 9924 | . . 3 ⊢ (2 · 10) ∈ ℂ |
6 | 5re 10976 | . . . 4 ⊢ 5 ∈ ℝ | |
7 | 6 | recni 9931 | . . 3 ⊢ 5 ∈ ℂ |
8 | 1re 9918 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | 8 | recni 9931 | . . . 4 ⊢ 1 ∈ ℂ |
10 | 9, 4 | mulcli 9924 | . . 3 ⊢ (1 · 10) ∈ ℂ |
11 | 4re 10974 | . . . 4 ⊢ 4 ∈ ℝ | |
12 | 11 | recni 9931 | . . 3 ⊢ 4 ∈ ℂ |
13 | 5, 7, 10, 12 | add4i 10139 | . 2 ⊢ (((2 · 10) + 5) + ((1 · 10) + 4)) = (((2 · 10) + (1 · 10)) + (5 + 4)) |
14 | 2, 9, 4 | adddiri 9930 | . . . 4 ⊢ ((2 + 1) · 10) = ((2 · 10) + (1 · 10)) |
15 | 14 | eqcomi 2619 | . . 3 ⊢ ((2 · 10) + (1 · 10)) = ((2 + 1) · 10) |
16 | 5p4e9 11044 | . . 3 ⊢ (5 + 4) = 9 | |
17 | 15, 16 | oveq12i 6561 | . 2 ⊢ (((2 · 10) + (1 · 10)) + (5 + 4)) = (((2 + 1) · 10) + 9) |
18 | df-3 10957 | . . . . 5 ⊢ 3 = (2 + 1) | |
19 | 18 | eqcomi 2619 | . . . 4 ⊢ (2 + 1) = 3 |
20 | 19 | oveq1i 6559 | . . 3 ⊢ ((2 + 1) · 10) = (3 · 10) |
21 | 20 | oveq1i 6559 | . 2 ⊢ (((2 + 1) · 10) + 9) = ((3 · 10) + 9) |
22 | 13, 17, 21 | 3eqtri 2636 | 1 ⊢ (((2 · 10) + 5) + ((1 · 10) + 4)) = ((3 · 10) + 9) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 (class class class)co 6549 1c1 9816 + caddc 9818 · cmul 9820 2c2 10947 3c3 10948 4c4 10949 5c5 10950 9c9 10954 10c10 10955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-10OLD 10964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |