MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnebg Structured version   Visualization version   GIF version

Theorem prnebg 4329
Description: A (proper) pair is not equal to another (maybe inproper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.)
Assertion
Ref Expression
prnebg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prnebg
StepHypRef Expression
1 prneimg 4328 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
213adant3 1074 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
3 ioran 510 . . . . 5 (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
4 ianor 508 . . . . . . 7 (¬ (𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷))
5 nne 2786 . . . . . . . 8 𝐴𝐶𝐴 = 𝐶)
6 nne 2786 . . . . . . . 8 𝐴𝐷𝐴 = 𝐷)
75, 6orbi12i 542 . . . . . . 7 ((¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
84, 7bitri 263 . . . . . 6 (¬ (𝐴𝐶𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
9 ianor 508 . . . . . . 7 (¬ (𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷))
10 nne 2786 . . . . . . . 8 𝐵𝐶𝐵 = 𝐶)
11 nne 2786 . . . . . . . 8 𝐵𝐷𝐵 = 𝐷)
1210, 11orbi12i 542 . . . . . . 7 ((¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
139, 12bitri 263 . . . . . 6 (¬ (𝐵𝐶𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
148, 13anbi12i 729 . . . . 5 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
153, 14bitri 263 . . . 4 (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
16 anddi 910 . . . . 5 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) ↔ (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))))
17 eqtr3 2631 . . . . . . . . . 10 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
18 eqneqall 2793 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
1917, 18syl 17 . . . . . . . . 9 ((𝐴 = 𝐶𝐵 = 𝐶) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
20 preq12 4214 . . . . . . . . . 10 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
2120a1d 25 . . . . . . . . 9 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
2219, 21jaoi 393 . . . . . . . 8 (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
23 preq12 4214 . . . . . . . . . . 11 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶})
24 prcom 4211 . . . . . . . . . . 11 {𝐷, 𝐶} = {𝐶, 𝐷}
2523, 24syl6eq 2660 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})
2625a1d 25 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
27 eqtr3 2631 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐷) → 𝐴 = 𝐵)
2827, 18syl 17 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐷) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
2926, 28jaoi 393 . . . . . . . 8 (((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷)) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
3022, 29jaoi 393 . . . . . . 7 ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
3130com12 32 . . . . . 6 (𝐴𝐵 → ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → {𝐴, 𝐵} = {𝐶, 𝐷}))
32313ad2ant3 1077 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3316, 32syl5bi 231 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3415, 33syl5bi 231 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3534necon1ad 2799 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} → ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
362, 35impbid 201 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {cpr 4127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-un 3545  df-sn 4126  df-pr 4128
This theorem is referenced by:  zlmodzxznm  42080
  Copyright terms: Public domain W3C validator