MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem4 Structured version   Visualization version   GIF version

Theorem prmreclem4 15461
Description: Lemma for prmrec 15464. Show by induction that the indexed (nondisjoint) union 𝑊𝑘 is at most the size of the prime reciprocal series. The key counting lemma is hashdvds 15318, to show that the number of numbers in 1...𝑁 that divide 𝑘 is at most 𝑁 / 𝑘. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem4 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem4
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . . . 7 (𝑥 = 𝐾 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝐾))
21iuneq1d 4481 . . . . . 6 (𝑥 = 𝐾 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘))
32fveq2d 6107 . . . . 5 (𝑥 = 𝐾 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (#‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)))
41sumeq1d 14279 . . . . . 6 (𝑥 = 𝐾 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
54oveq2d 6565 . . . . 5 (𝑥 = 𝐾 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
63, 5breq12d 4596 . . . 4 (𝑥 = 𝐾 → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (#‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
76imbi2d 329 . . 3 (𝑥 = 𝐾 → ((𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
8 oveq2 6557 . . . . . . 7 (𝑥 = 𝑗 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑗))
98iuneq1d 4481 . . . . . 6 (𝑥 = 𝑗 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘))
109fveq2d 6107 . . . . 5 (𝑥 = 𝑗 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)))
118sumeq1d 14279 . . . . . 6 (𝑥 = 𝑗 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1211oveq2d 6565 . . . . 5 (𝑥 = 𝑗 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
1310, 12breq12d 4596 . . . 4 (𝑥 = 𝑗 → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
1413imbi2d 329 . . 3 (𝑥 = 𝑗 → ((𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
15 oveq2 6557 . . . . . . 7 (𝑥 = (𝑗 + 1) → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...(𝑗 + 1)))
1615iuneq1d 4481 . . . . . 6 (𝑥 = (𝑗 + 1) → 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘))
1716fveq2d 6107 . . . . 5 (𝑥 = (𝑗 + 1) → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)))
1815sumeq1d 14279 . . . . . 6 (𝑥 = (𝑗 + 1) → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
1918oveq2d 6565 . . . . 5 (𝑥 = (𝑗 + 1) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2017, 19breq12d 4596 . . . 4 (𝑥 = (𝑗 + 1) → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2120imbi2d 329 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
22 oveq2 6557 . . . . . . 7 (𝑥 = 𝑁 → ((𝐾 + 1)...𝑥) = ((𝐾 + 1)...𝑁))
2322iuneq1d 4481 . . . . . 6 (𝑥 = 𝑁 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘) = 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
2423fveq2d 6107 . . . . 5 (𝑥 = 𝑁 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) = (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
2522sumeq1d 14279 . . . . . 6 (𝑥 = 𝑁 → Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
2625oveq2d 6565 . . . . 5 (𝑥 = 𝑁 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
2724, 26breq12d 4596 . . . 4 (𝑥 = 𝑁 → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
2827imbi2d 329 . . 3 (𝑥 = 𝑁 → ((𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑥)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑥)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) ↔ (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
29 0le0 10987 . . . . . 6 0 ≤ 0
30 prmrec.3 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
3130nncnd 10913 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
3231mul01d 10114 . . . . . 6 (𝜑 → (𝑁 · 0) = 0)
3329, 32syl5breqr 4621 . . . . 5 (𝜑 → 0 ≤ (𝑁 · 0))
34 prmrec.2 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
3534nnred 10912 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ)
3635ltp1d 10833 . . . . . . . . . 10 (𝜑𝐾 < (𝐾 + 1))
3734nnzd 11357 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℤ)
3837peano2zd 11361 . . . . . . . . . . 11 (𝜑 → (𝐾 + 1) ∈ ℤ)
39 fzn 12228 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4038, 37, 39syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐾 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝐾) = ∅))
4136, 40mpbid 221 . . . . . . . . 9 (𝜑 → ((𝐾 + 1)...𝐾) = ∅)
4241iuneq1d 4481 . . . . . . . 8 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
43 0iun 4513 . . . . . . . 8 𝑘 ∈ ∅ (𝑊𝑘) = ∅
4442, 43syl6eq 2660 . . . . . . 7 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘) = ∅)
4544fveq2d 6107 . . . . . 6 (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = (#‘∅))
46 hash0 13019 . . . . . 6 (#‘∅) = 0
4745, 46syl6eq 2660 . . . . 5 (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) = 0)
4841sumeq1d 14279 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
49 sum0 14299 . . . . . . 7 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
5048, 49syl6eq 2660 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
5150oveq2d 6565 . . . . 5 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
5233, 47, 513brtr4d 4615 . . . 4 (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
5352a1i 11 . . 3 (𝐾 ∈ ℤ → (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝐾)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝐾)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
54 fzfi 12633 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
55 elfzuz 12209 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑗) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
5634peano2nnd 10914 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 + 1) ∈ ℕ)
57 eluznn 11634 . . . . . . . . . . . . . . . . 17 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
5856, 57sylan 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
59 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
60 breq1 4586 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
6159, 60anbi12d 743 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
6261rabbidv 3164 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
63 prmrec.7 . . . . . . . . . . . . . . . . . . 19 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
64 ovex 6577 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ∈ V
6564rabex 4740 . . . . . . . . . . . . . . . . . . 19 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
6662, 63, 65fvmpt 6191 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
6766adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
68 ssrab2 3650 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
6967, 68syl6eqss 3618 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
7058, 69syldan 486 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
7155, 70sylan2 490 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑗)) → (𝑊𝑘) ⊆ (1...𝑁))
7271ralrimiva 2949 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7372adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
74 iunss 4497 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
7573, 74sylibr 223 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁))
76 ssfi 8065 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
7754, 75, 76sylancr 694 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin)
78 hashcl 13009 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
7977, 78syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℕ0)
8079nn0red 11229 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ∈ ℝ)
8130nnred 10912 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
8281adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℝ)
83 fzfid 12634 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...𝑗) ∈ Fin)
8456adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℕ)
8584, 55, 57syl2an 493 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → 𝑘 ∈ ℕ)
86 nnrecre 10934 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
87 0re 9919 . . . . . . . . . . . 12 0 ∈ ℝ
88 ifcl 4080 . . . . . . . . . . . 12 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
8986, 87, 88sylancl 693 . . . . . . . . . . 11 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9085, 89syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑗)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9183, 90fsumrecl 14312 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
9282, 91remulcld 9949 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
93 prmnn 15226 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℙ → (𝑗 + 1) ∈ ℕ)
94 nnrecre 10934 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (1 / (𝑗 + 1)) ∈ ℝ)
9593, 94syl 17 . . . . . . . . . . 11 ((𝑗 + 1) ∈ ℙ → (1 / (𝑗 + 1)) ∈ ℝ)
9695adantl 481 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (1 / (𝑗 + 1)) ∈ ℝ)
97 0red 9920 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ∈ ℝ)
9896, 97ifclda 4070 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℝ)
9982, 98remulcld 9949 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) ∈ ℝ)
10080, 92, 99leadd1d 10500 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
101 eluzp1p1 11589 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝐾) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
102101adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ (ℤ‘(𝐾 + 1)))
103 simpl 472 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝜑)
104 elfzuz 12209 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
10589recnd 9947 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
10658, 105syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
107103, 104, 106syl2an 493 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
108 eleq1 2676 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (𝑘 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
109 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = (𝑗 + 1) → (1 / 𝑘) = (1 / (𝑗 + 1)))
110108, 109ifbieq1d 4059 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))
111102, 107, 110fsumm1 14324 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
112 eluzelz 11573 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ ℤ)
113112adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℤ)
114113zcnd 11359 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℂ)
115 ax-1cn 9873 . . . . . . . . . . . . . . 15 1 ∈ ℂ
116 pncan 10166 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
117114, 115, 116sylancl 693 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑗 + 1) − 1) = 𝑗)
118117oveq2d 6565 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...((𝑗 + 1) − 1)) = ((𝐾 + 1)...𝑗))
119118sumeq1d 14279 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
120119oveq1d 6564 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (Σ𝑘 ∈ ((𝐾 + 1)...((𝑗 + 1) − 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
121111, 120eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
122121oveq2d 6565 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
12331adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ ℂ)
12491recnd 9947 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
12598recnd 9947 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) ∈ ℂ)
126123, 124, 125adddid 9943 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) + if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
127122, 126eqtrd 2644 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
128127breq2d 4595 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ ((𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))))
129100, 128bitr4d 270 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
130104, 70sylan2 490 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → (𝑊𝑘) ⊆ (1...𝑁))
131130ralrimiva 2949 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
132131adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
133 iunss 4497 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
134132, 133sylibr 223 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁))
135 ssfi 8065 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
13654, 134, 135sylancr 694 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin)
137 hashcl 13009 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) ∈ Fin → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
138136, 137syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℕ0)
139138nn0red 11229 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ)
140 eluznn 11634 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
14134, 140sylan 487 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ ℕ)
142141peano2nnd 10914 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℕ)
14369ralrimiva 2949 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
144143adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → ∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁))
145 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑘 = (𝑗 + 1) → (𝑊𝑘) = (𝑊‘(𝑗 + 1)))
146145sseq1d 3595 . . . . . . . . . . . . . 14 (𝑘 = (𝑗 + 1) → ((𝑊𝑘) ⊆ (1...𝑁) ↔ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)))
147146rspcv 3278 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℕ → (∀𝑘 ∈ ℕ (𝑊𝑘) ⊆ (1...𝑁) → (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)))
148142, 144, 147sylc 63 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁))
149 ssfi 8065 . . . . . . . . . . . 12 (((1...𝑁) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ⊆ (1...𝑁)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
15054, 148, 149sylancr 694 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) ∈ Fin)
151 hashcl 13009 . . . . . . . . . . 11 ((𝑊‘(𝑗 + 1)) ∈ Fin → (#‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
152150, 151syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘(𝑊‘(𝑗 + 1))) ∈ ℕ0)
153152nn0red 11229 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘(𝑊‘(𝑗 + 1))) ∈ ℝ)
15480, 153readdcld 9948 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (#‘(𝑊‘(𝑗 + 1)))) ∈ ℝ)
15580, 99readdcld 9948 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ)
15638adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
157 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
15834nncnd 10913 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℂ)
159158adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐾 ∈ ℂ)
160 pncan 10166 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
161159, 115, 160sylancl 693 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1) − 1) = 𝐾)
162161fveq2d 6107 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ‘((𝐾 + 1) − 1)) = (ℤ𝐾))
163157, 162eleqtrrd 2691 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1)))
164 fzsuc2 12268 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℤ ∧ 𝑗 ∈ (ℤ‘((𝐾 + 1) − 1))) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
165156, 163, 164syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) = (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)}))
166165iuneq1d 4481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘))
167 iunxun 4541 . . . . . . . . . . . 12 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘))
168 ovex 6577 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
169168, 145iunxsn 4539 . . . . . . . . . . . . 13 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘) = (𝑊‘(𝑗 + 1))
170169uneq2i 3726 . . . . . . . . . . . 12 ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ 𝑘 ∈ {(𝑗 + 1)} (𝑊𝑘)) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
171167, 170eqtri 2632 . . . . . . . . . . 11 𝑘 ∈ (((𝐾 + 1)...𝑗) ∪ {(𝑗 + 1)})(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))
172166, 171syl6eq 2660 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘) = ( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1))))
173172fveq2d 6107 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) = (#‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))))
174 hashun2 13033 . . . . . . . . . 10 (( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∈ Fin ∧ (𝑊‘(𝑗 + 1)) ∈ Fin) → (#‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (#‘(𝑊‘(𝑗 + 1)))))
17577, 150, 174syl2anc 691 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘( 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘) ∪ (𝑊‘(𝑗 + 1)))) ≤ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (#‘(𝑊‘(𝑗 + 1)))))
176173, 175eqbrtrd 4605 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (#‘(𝑊‘(𝑗 + 1)))))
17782, 142nndivred 10946 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) ∈ ℝ)
178 flle 12462 . . . . . . . . . . . . . 14 ((𝑁 / (𝑗 + 1)) ∈ ℝ → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
179177, 178syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ≤ (𝑁 / (𝑗 + 1)))
180 elfznn 12241 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
181180nncnd 10913 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℂ)
182181subid1d 10260 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑁) → (𝑛 − 0) = 𝑛)
183182breq2d 4595 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...𝑁) → ((𝑗 + 1) ∥ (𝑛 − 0) ↔ (𝑗 + 1) ∥ 𝑛))
184183rabbiia 3161 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)} = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}
185184fveq2i 6106 . . . . . . . . . . . . . 14 (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
186 1zzd 11285 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 1 ∈ ℤ)
18730nnnn0d 11228 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
188 nn0uz 11598 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
189 1m1e0 10966 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
190189fveq2i 6106 . . . . . . . . . . . . . . . . . . 19 (ℤ‘(1 − 1)) = (ℤ‘0)
191188, 190eqtr4i 2635 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘(1 − 1))
192187, 191syl6eleq 2698 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(1 − 1)))
193192adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ‘(1 − 1)))
194 0zd 11266 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → 0 ∈ ℤ)
195142, 186, 193, 194hashdvds 15318 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))))
196123subid1d 10260 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 − 0) = 𝑁)
197196oveq1d 6564 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝑁 − 0) / (𝑗 + 1)) = (𝑁 / (𝑗 + 1)))
198197fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘((𝑁 − 0) / (𝑗 + 1))) = (⌊‘(𝑁 / (𝑗 + 1))))
199189oveq1i 6559 . . . . . . . . . . . . . . . . . . . . 21 ((1 − 1) − 0) = (0 − 0)
200 0m0e0 11007 . . . . . . . . . . . . . . . . . . . . 21 (0 − 0) = 0
201199, 200eqtri 2632 . . . . . . . . . . . . . . . . . . . 20 ((1 − 1) − 0) = 0
202201oveq1i 6559 . . . . . . . . . . . . . . . . . . 19 (((1 − 1) − 0) / (𝑗 + 1)) = (0 / (𝑗 + 1))
203142nncnd 10913 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ∈ ℂ)
204142nnne0d 10942 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗 + 1) ≠ 0)
205203, 204div0d 10679 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (ℤ𝐾)) → (0 / (𝑗 + 1)) = 0)
206202, 205syl5eq 2656 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((1 − 1) − 0) / (𝑗 + 1)) = 0)
207206fveq2d 6107 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = (⌊‘0))
208 0z 11265 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
209 flid 12471 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℤ → (⌊‘0) = 0)
210208, 209ax-mp 5 . . . . . . . . . . . . . . . . 17 (⌊‘0) = 0
211207, 210syl6eq 2660 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(((1 − 1) − 0) / (𝑗 + 1))) = 0)
212198, 211oveq12d 6567 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘((𝑁 − 0) / (𝑗 + 1))) − (⌊‘(((1 − 1) − 0) / (𝑗 + 1)))) = ((⌊‘(𝑁 / (𝑗 + 1))) − 0))
213177flcld 12461 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℤ)
214213zcnd 11359 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (ℤ𝐾)) → (⌊‘(𝑁 / (𝑗 + 1))) ∈ ℂ)
215214subid1d 10260 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((⌊‘(𝑁 / (𝑗 + 1))) − 0) = (⌊‘(𝑁 / (𝑗 + 1))))
216195, 212, 2153eqtrd 2648 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ (𝑛 − 0)}) = (⌊‘(𝑁 / (𝑗 + 1))))
217185, 216syl5eqr 2658 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) = (⌊‘(𝑁 / (𝑗 + 1))))
218123, 203, 204divrecd 10683 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 / (𝑗 + 1)) = (𝑁 · (1 / (𝑗 + 1))))
219218eqcomd 2616 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · (1 / (𝑗 + 1))) = (𝑁 / (𝑗 + 1)))
220179, 217, 2193brtr4d 4615 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
221220adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}) ≤ (𝑁 · (1 / (𝑗 + 1))))
222 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝 ∈ ℙ ↔ (𝑗 + 1) ∈ ℙ))
223 breq1 4586 . . . . . . . . . . . . . . . . . 18 (𝑝 = (𝑗 + 1) → (𝑝𝑛 ↔ (𝑗 + 1) ∥ 𝑛))
224222, 223anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑗 + 1) → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
225224rabbidv 3164 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑗 + 1) → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
22664rabex 4740 . . . . . . . . . . . . . . . 16 {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} ∈ V
227225, 63, 226fvmpt 6191 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ ℕ → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
228142, 227syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
229228adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
230 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑗 + 1) ∈ ℙ)
231230biantrurd 528 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → ((𝑗 + 1) ∥ 𝑛 ↔ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)))
232231rabbidv 3164 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛} = {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)})
233229, 232eqtr4d 2647 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = {𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛})
234233fveq2d 6107 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (#‘(𝑊‘(𝑗 + 1))) = (#‘{𝑛 ∈ (1...𝑁) ∣ (𝑗 + 1) ∥ 𝑛}))
235 iftrue 4042 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
236235adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = (1 / (𝑗 + 1)))
237236oveq2d 6565 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · (1 / (𝑗 + 1))))
238221, 234, 2373brtr4d 4615 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ (𝑗 + 1) ∈ ℙ) → (#‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
23929a1i 11 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → 0 ≤ 0)
240 simpl 472 . . . . . . . . . . . . . . . . 17 (((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛) → (𝑗 + 1) ∈ ℙ)
241240con3i 149 . . . . . . . . . . . . . . . 16 (¬ (𝑗 + 1) ∈ ℙ → ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
242241ralrimivw 2950 . . . . . . . . . . . . . . 15 (¬ (𝑗 + 1) ∈ ℙ → ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
243 rabeq0 3911 . . . . . . . . . . . . . . 15 ({𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅ ↔ ∀𝑛 ∈ (1...𝑁) ¬ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛))
244242, 243sylibr 223 . . . . . . . . . . . . . 14 (¬ (𝑗 + 1) ∈ ℙ → {𝑛 ∈ (1...𝑁) ∣ ((𝑗 + 1) ∈ ℙ ∧ (𝑗 + 1) ∥ 𝑛)} = ∅)
245228, 244sylan9eq 2664 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑊‘(𝑗 + 1)) = ∅)
246245fveq2d 6107 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (#‘(𝑊‘(𝑗 + 1))) = (#‘∅))
247246, 46syl6eq 2660 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (#‘(𝑊‘(𝑗 + 1))) = 0)
248 iffalse 4045 . . . . . . . . . . . . 13 (¬ (𝑗 + 1) ∈ ℙ → if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0) = 0)
249248oveq2d 6565 . . . . . . . . . . . 12 (¬ (𝑗 + 1) ∈ ℙ → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = (𝑁 · 0))
25032adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · 0) = 0)
251249, 250sylan9eqr 2666 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)) = 0)
252239, 247, 2513brtr4d 4615 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ ¬ (𝑗 + 1) ∈ ℙ) → (#‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
253238, 252pm2.61dan 828 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘(𝑊‘(𝑗 + 1))) ≤ (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0)))
254153, 99, 80, 253leadd2dd 10521 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (#‘(𝑊‘(𝑗 + 1)))) ≤ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
255139, 154, 155, 176, 254letrd 10073 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))))
256 fzfid 12634 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((𝐾 + 1)...(𝑗 + 1)) ∈ Fin)
25758, 89syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
258103, 104, 257syl2an 493 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
259256, 258fsumrecl 14312 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ𝐾)) → Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
26082, 259remulcld 9949 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
261 letr 10010 . . . . . . . 8 (((#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ∈ ℝ ∧ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∈ ℝ ∧ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) → (((#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
262139, 155, 260, 261syl3anc 1318 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ∧ ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
263255, 262mpand 707 . . . . . 6 ((𝜑𝑗 ∈ (ℤ𝐾)) → (((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) + (𝑁 · if((𝑗 + 1) ∈ ℙ, (1 / (𝑗 + 1)), 0))) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
264129, 263sylbid 229 . . . . 5 ((𝜑𝑗 ∈ (ℤ𝐾)) → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
265264expcom 450 . . . 4 (𝑗 ∈ (ℤ𝐾) → (𝜑 → ((#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
266265a2d 29 . . 3 (𝑗 ∈ (ℤ𝐾) → ((𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑗)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑗)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) → (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...(𝑗 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))))
2677, 14, 21, 28, 53, 266uzind4 11622 . 2 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
268267com12 32 1 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (#‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  cun 3538  wss 3540  c0 3874  ifcif 4036  {csn 4125   ciun 4455   class class class wbr 4583  cmpt 4643  dom cdm 5038  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cfl 12453  seqcseq 12663  #chash 12979  cli 14063  Σcsu 14264  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-prm 15224
This theorem is referenced by:  prmreclem5  15462
  Copyright terms: Public domain W3C validator