Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmoval Structured version   Visualization version   GIF version

Theorem prmoval 15575
 Description: Value of the primorial function for nonnegative integers. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmoval (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem prmoval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-prmo 15574 . . 3 #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
21a1i 11 . 2 (𝑁 ∈ ℕ0 → #p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)))
3 oveq2 6557 . . . 4 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
43prodeq1d 14490 . . 3 (𝑛 = 𝑁 → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
54adantl 481 . 2 ((𝑁 ∈ ℕ0𝑛 = 𝑁) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
6 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
7 prodex 14476 . . 3 𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
87a1i 11 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V)
92, 5, 6, 8fvmptd 6197 1 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ifcif 4036   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  1c1 9816  ℕ0cn0 11169  ...cfz 12197  ∏cprod 14474  ℙcprime 15223  #pcprmo 15573 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seq 12664  df-prod 14475  df-prmo 15574 This theorem is referenced by:  prmocl  15576  prmo0  15578  prmo1  15579  prmop1  15580  prmdvdsprmo  15584  prmolefac  15588  prmodvdslcmf  15589  prmgapprmo  15604
 Copyright terms: Public domain W3C validator