MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmop1 Structured version   Visualization version   GIF version

Theorem prmop1 15580
Description: The primorial of a successor. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmop1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))

Proof of Theorem prmop1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11210 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 prmoval 15575 . . 3 ((𝑁 + 1) ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
4 nn0p1nn 11209 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
5 elnnuz 11600 . . . 4 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (ℤ‘1))
64, 5sylib 207 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
7 elfzelz 12213 . . . . . 6 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ)
87zcnd 11359 . . . . 5 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℂ)
98adantl 481 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
10 1cnd 9935 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
119, 10ifcld 4081 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
12 eleq1 2676 . . . 4 (𝑘 = (𝑁 + 1) → (𝑘 ∈ ℙ ↔ (𝑁 + 1) ∈ ℙ))
13 id 22 . . . 4 (𝑘 = (𝑁 + 1) → 𝑘 = (𝑁 + 1))
1412, 13ifbieq1d 4059 . . 3 (𝑘 = (𝑁 + 1) → if(𝑘 ∈ ℙ, 𝑘, 1) = if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1))
156, 11, 14fprodm1 14536 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
16 nn0cn 11179 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 10333 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 6565 . . . . 5 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
2019prodeq1d 14490 . . . 4 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2120oveq1d 6564 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
22 prmoval 15575 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2322eqcomd 2616 . . . . . . 7 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2423adantl 481 . . . . . 6 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2524oveq1d 6564 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1)))
26 iftrue 4042 . . . . . . . 8 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = (𝑁 + 1))
2726oveq2d 6565 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)))
28 iftrue 4042 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = ((#p𝑁) · (𝑁 + 1)))
2927, 28eqeq12d 2625 . . . . . 6 ((𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3029adantr 480 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3125, 30mpbird 246 . . . 4 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
32 fzfid 12634 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
33 elfznn 12241 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
34 1nn 10908 . . . . . . . . . . . . 13 1 ∈ ℕ
3534a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 1 ∈ ℕ)
3633, 35ifcld 4081 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3832, 37fprodnncl 14524 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3938nncnd 10913 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4039adantl 481 . . . . . . 7 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4140mulid1d 9936 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4222adantl 481 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4341, 42eqtr4d 2647 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁))
44 iffalse 4045 . . . . . . . 8 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = 1)
4544oveq2d 6565 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1))
46 iffalse 4045 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = (#p𝑁))
4745, 46eqeq12d 2625 . . . . . 6 (¬ (𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4847adantr 480 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4943, 48mpbird 246 . . . 4 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5031, 49pm2.61ian 827 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5121, 50eqtrd 2644 . 2 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
523, 15, 513eqtrd 2648 1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  ifcif 4036  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  0cn0 11169  cuz 11563  ...cfz 12197  cprod 14474  cprime 15223  #pcprmo 15573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-prmo 15574
This theorem is referenced by:  prmonn2  15581
  Copyright terms: Public domain W3C validator