MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplcmlem2 Structured version   Visualization version   GIF version

Theorem prmgaplcmlem2 15594
Description: Lemma for prmgaplcm 15602: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
prmgaplcmlem2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))

Proof of Theorem prmgaplcmlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 12209 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
21adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ‘2))
3 breq1 4586 . . . . 5 (𝑖 = 𝐼 → (𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ↔ 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)))
4 breq1 4586 . . . . 5 (𝑖 = 𝐼 → (𝑖𝐼𝐼𝐼))
53, 4anbi12d 743 . . . 4 (𝑖 = 𝐼 → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼)))
65adantl 481 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼)))
7 prmgaplcmlem1 15593 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼))
8 elfzelz 12213 . . . . . 6 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
9 iddvds 14833 . . . . . 6 (𝐼 ∈ ℤ → 𝐼𝐼)
108, 9syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼𝐼)
1110adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼𝐼)
127, 11jca 553 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼))
132, 6, 12rspcedvd 3289 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼))
14 fzssz 12214 . . . . . . 7 (1...𝑁) ⊆ ℤ
1514a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (1...𝑁) ⊆ ℤ)
16 fzfid 12634 . . . . . 6 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
17 0nelfz1 12231 . . . . . . 7 0 ∉ (1...𝑁)
1817a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ∉ (1...𝑁))
19 lcmfn0cl 15177 . . . . . 6 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
2015, 16, 18, 19syl3anc 1318 . . . . 5 (𝑁 ∈ ℕ → (lcm‘(1...𝑁)) ∈ ℕ)
2120adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
22 eluz2nn 11602 . . . . . 6 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
231, 22syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
2423adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
2521, 24nnaddcld 10944 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ)
26 ncoprmgcdgt1b 15202 . . 3 ((((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)))
2725, 24, 26syl2anc 691 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)))
2813, 27mpbid 221 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wnel 2781  wrex 2897  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cn 10897  2c2 10947  cz 11254  cuz 11563  ...cfz 12197  cdvds 14821   gcd cgcd 15054  lcmclcmf 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-gcd 15055  df-lcmf 15142
This theorem is referenced by:  prmgaplcm  15602
  Copyright terms: Public domain W3C validator