MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdivdiv Structured version   Visualization version   GIF version

Theorem prmdivdiv 15330
Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdivdiv ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))

Proof of Theorem prmdivdiv
StepHypRef Expression
1 1e0p1 11428 . . . . 5 1 = (0 + 1)
21oveq1i 6559 . . . 4 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
3 0z 11265 . . . . 5 0 ∈ ℤ
4 fzp1ss 12262 . . . . 5 (0 ∈ ℤ → ((0 + 1)...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)))
53, 4ax-mp 5 . . . 4 ((0 + 1)...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
62, 5eqsstri 3598 . . 3 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
7 simpr 476 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (1...(𝑃 − 1)))
86, 7sseldi 3566 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (0...(𝑃 − 1)))
9 simpl 472 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
10 elfznn 12241 . . . . . . 7 (𝐴 ∈ (1...(𝑃 − 1)) → 𝐴 ∈ ℕ)
1110adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℕ)
1211nnzd 11357 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℤ)
13 prmnn 15226 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
14 fzm1ndvds 14882 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝐴)
1513, 14sylan 487 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝐴)
16 prmdiv.1 . . . . . 6 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
1716prmdiv 15328 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
189, 12, 15, 17syl3anc 1318 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
1918simprd 478 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
2011nncnd 10913 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℂ)
2118simpld 474 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ (1...(𝑃 − 1)))
22 elfznn 12241 . . . . . . 7 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℕ)
2321, 22syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℕ)
2423nncnd 10913 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℂ)
2520, 24mulcomd 9940 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝐴 · 𝑅) = (𝑅 · 𝐴))
2625oveq1d 6564 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 · 𝑅) − 1) = ((𝑅 · 𝐴) − 1))
2719, 26breqtrd 4609 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝑅 · 𝐴) − 1))
28 elfzelz 12213 . . . 4 (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ)
2921, 28syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℤ)
3013adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ)
31 fzm1ndvds 14882 . . . 4 ((𝑃 ∈ ℕ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑅)
3230, 21, 31syl2anc 691 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑅)
33 eqid 2610 . . . 4 ((𝑅↑(𝑃 − 2)) mod 𝑃) = ((𝑅↑(𝑃 − 2)) mod 𝑃)
3433prmdiveq 15329 . . 3 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℤ ∧ ¬ 𝑃𝑅) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)))
359, 29, 32, 34syl3anc 1318 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)))
368, 27, 35mpbi2and 958 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540   class class class wbr 4583  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  2c2 10947  cz 11254  ...cfz 12197   mod cmo 12530  cexp 12722  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309
This theorem is referenced by:  wilthlem2  24595
  Copyright terms: Public domain W3C validator