Step | Hyp | Ref
| Expression |
1 | | 1nprm 15230 |
. . . 4
⊢ ¬ 1
∈ ℙ |
2 | | simpr 476 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ 𝐵 ⊆
{(0g‘𝐺)}) |
3 | | cygctb.1 |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐺) |
4 | | eqid 2610 |
. . . . . . . . . . . 12
⊢
(0g‘𝐺) = (0g‘𝐺) |
5 | 3, 4 | grpidcl 17273 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
6 | 5 | snssd 4281 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp →
{(0g‘𝐺)}
⊆ 𝐵) |
7 | 6 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ {(0g‘𝐺)} ⊆ 𝐵) |
8 | 2, 7 | eqssd 3585 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ 𝐵 =
{(0g‘𝐺)}) |
9 | 8 | fveq2d 6107 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ (#‘𝐵) =
(#‘{(0g‘𝐺)})) |
10 | | fvex 6113 |
. . . . . . . 8
⊢
(0g‘𝐺) ∈ V |
11 | | hashsng 13020 |
. . . . . . . 8
⊢
((0g‘𝐺) ∈ V →
(#‘{(0g‘𝐺)}) = 1) |
12 | 10, 11 | ax-mp 5 |
. . . . . . 7
⊢
(#‘{(0g‘𝐺)}) = 1 |
13 | 9, 12 | syl6eq 2660 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ (#‘𝐵) =
1) |
14 | | simplr 788 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ (#‘𝐵) ∈
ℙ) |
15 | 13, 14 | eqeltrrd 2689 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆
{(0g‘𝐺)})
→ 1 ∈ ℙ) |
16 | 15 | ex 449 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) → (𝐵 ⊆
{(0g‘𝐺)}
→ 1 ∈ ℙ)) |
17 | 1, 16 | mtoi 189 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) → ¬
𝐵 ⊆
{(0g‘𝐺)}) |
18 | | nss 3626 |
. . 3
⊢ (¬
𝐵 ⊆
{(0g‘𝐺)}
↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) |
19 | 17, 18 | sylib 207 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) →
∃𝑥(𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) |
20 | | eqid 2610 |
. . 3
⊢
(od‘𝐺) =
(od‘𝐺) |
21 | | simpll 786 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝐺 ∈ Grp) |
22 | | simprl 790 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝑥 ∈ 𝐵) |
23 | | simprr 792 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ¬ 𝑥 ∈
{(0g‘𝐺)}) |
24 | 20, 4, 3 | odeq1 17800 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g‘𝐺))) |
25 | 21, 22, 24 | syl2anc 691 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g‘𝐺))) |
26 | | velsn 4141 |
. . . . . 6
⊢ (𝑥 ∈
{(0g‘𝐺)}
↔ 𝑥 =
(0g‘𝐺)) |
27 | 25, 26 | syl6bbr 277 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
28 | 23, 27 | mtbird 314 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ¬
((od‘𝐺)‘𝑥) = 1) |
29 | | prmnn 15226 |
. . . . . . . . . 10
⊢
((#‘𝐵) ∈
ℙ → (#‘𝐵)
∈ ℕ) |
30 | 29 | ad2antlr 759 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (#‘𝐵) ∈
ℕ) |
31 | 30 | nnnn0d 11228 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (#‘𝐵) ∈
ℕ0) |
32 | | fvex 6113 |
. . . . . . . . . 10
⊢
(Base‘𝐺)
∈ V |
33 | 3, 32 | eqeltri 2684 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
34 | | hashclb 13011 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(#‘𝐵) ∈
ℕ0)) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐵 ∈ Fin ↔
(#‘𝐵) ∈
ℕ0) |
36 | 31, 35 | sylibr 223 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝐵 ∈ Fin) |
37 | 3, 20 | oddvds2 17806 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∥ (#‘𝐵)) |
38 | 21, 36, 22, 37 | syl3anc 1318 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ((od‘𝐺)‘𝑥) ∥ (#‘𝐵)) |
39 | | simplr 788 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (#‘𝐵) ∈
ℙ) |
40 | 3, 20 | odcl2 17805 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥 ∈ 𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
41 | 21, 36, 22, 40 | syl3anc 1318 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
42 | | dvdsprime 15238 |
. . . . . . 7
⊢
(((#‘𝐵) ∈
ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (#‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (#‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1))) |
43 | 39, 41, 42 | syl2anc 691 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) ∥ (#‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (#‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1))) |
44 | 38, 43 | mpbid 221 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (((od‘𝐺)‘𝑥) = (#‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1)) |
45 | 44 | ord 391 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → (¬
((od‘𝐺)‘𝑥) = (#‘𝐵) → ((od‘𝐺)‘𝑥) = 1)) |
46 | 28, 45 | mt3d 139 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → ((od‘𝐺)‘𝑥) = (#‘𝐵)) |
47 | 3, 20, 21, 22, 46 | iscygodd 18113 |
. 2
⊢ (((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ {(0g‘𝐺)})) → 𝐺 ∈ CycGrp) |
48 | 19, 47 | exlimddv 1850 |
1
⊢ ((𝐺 ∈ Grp ∧ (#‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp) |