Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preqr1OLD | Structured version Visualization version GIF version |
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) Obsolete version of preqr1 4319 as of 18-Dec-2020. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
preqr1.a | ⊢ 𝐴 ∈ V |
preqr1.b | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
preqr1OLD | ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preqr1.a | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4241 | . . . 4 ⊢ 𝐴 ∈ {𝐴, 𝐶} |
3 | eleq2 2677 | . . . 4 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶})) | |
4 | 2, 3 | mpbii 222 | . . 3 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶}) |
5 | 1 | elpr 4146 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
6 | 4, 5 | sylib 207 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
7 | preqr1.b | . . . . 5 ⊢ 𝐵 ∈ V | |
8 | 7 | prid1 4241 | . . . 4 ⊢ 𝐵 ∈ {𝐵, 𝐶} |
9 | eleq2 2677 | . . . 4 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶})) | |
10 | 8, 9 | mpbiri 247 | . . 3 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶}) |
11 | 7 | elpr 4146 | . . 3 ⊢ (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
12 | 10, 11 | sylib 207 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
13 | eqcom 2617 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
14 | eqeq2 2621 | . 2 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐴 ↔ 𝐵 = 𝐶)) | |
15 | 6, 12, 13, 14 | oplem1 999 | 1 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {cpr 4127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-un 3545 df-sn 4126 df-pr 4128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |