Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsvscaval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsvscaval.t | ⊢ · = ( ·𝑠 ‘𝑌) |
prdsvscaval.k | ⊢ 𝐾 = (Base‘𝑆) |
prdsvscaval.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsvscaval.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsvscaval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) |
prdsvscaval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
prdsvscaval | ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsvscaval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | prdsvscaval.r | . . . 4 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
4 | prdsvscaval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | fnex 6386 | . . . 4 ⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) | |
6 | 3, 4, 5 | syl2anc 691 | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) |
7 | prdsbasmpt.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
8 | fndm 5904 | . . . 4 ⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) | |
9 | 3, 8 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
10 | prdsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
11 | prdsvscaval.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
12 | 1, 2, 6, 7, 9, 10, 11 | prdsvsca 15943 | . 2 ⊢ (𝜑 → · = (𝑦 ∈ 𝐾, 𝑧 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥))))) |
13 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐹 → 𝑦 = 𝐹) | |
14 | fveq1 6102 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧‘𝑥) = (𝐺‘𝑥)) | |
15 | 13, 14 | oveqan12d 6568 | . . . 4 ⊢ ((𝑦 = 𝐹 ∧ 𝑧 = 𝐺) → (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥)) = (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) |
16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥)) = (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) |
17 | 16 | mpteq2dv 4673 | . 2 ⊢ ((𝜑 ∧ (𝑦 = 𝐹 ∧ 𝑧 = 𝐺)) → (𝑥 ∈ 𝐼 ↦ (𝑦( ·𝑠 ‘(𝑅‘𝑥))(𝑧‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
18 | prdsvscaval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
19 | prdsvscaval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
20 | mptexg 6389 | . . 3 ⊢ (𝐼 ∈ 𝑊 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ V) | |
21 | 4, 20 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥))) ∈ V) |
22 | 12, 17, 18, 19, 21 | ovmpt2d 6686 | 1 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ↦ cmpt 4643 dom cdm 5038 Fn wfn 5799 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 ·𝑠 cvsca 15772 Xscprds 15929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-hom 15793 df-cco 15794 df-prds 15931 |
This theorem is referenced by: prdsvscafval 15963 pwsvscafval 15977 xpsvsca 16062 prdsvscacl 18789 prdslmodd 18790 |
Copyright terms: Public domain | W3C validator |