MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvsca Structured version   Visualization version   GIF version

Theorem prdsvsca 15943
Description: Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
prdsvsca.k 𝐾 = (Base‘𝑆)
prdsvsca.m · = ( ·𝑠𝑃)
Assertion
Ref Expression
prdsvsca (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐾,𝑔   𝜑,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑃,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑆,𝑓,𝑔,𝑥
Allowed substitution hints:   · (𝑥,𝑓,𝑔)   𝐾(𝑥)   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑓,𝑔)

Proof of Theorem prdsvsca
Dummy variables 𝑎 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 prdsvsca.k . . 3 𝐾 = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (𝜑𝑆𝑉)
5 prdsbas.r . . . 4 (𝜑𝑅𝑊)
6 prdsbas.b . . . 4 𝐵 = (Base‘𝑃)
71, 4, 5, 6, 3prdsbas 15940 . . 3 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
8 eqid 2610 . . . 4 (+g𝑃) = (+g𝑃)
91, 4, 5, 6, 3, 8prdsplusg 15941 . . 3 (𝜑 → (+g𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
10 eqid 2610 . . . 4 (.r𝑃) = (.r𝑃)
111, 4, 5, 6, 3, 10prdsmulr 15942 . . 3 (𝜑 → (.r𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
12 eqidd 2611 . . 3 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
13 eqidd 2611 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
14 eqidd 2611 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
15 eqidd 2611 . . 3 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
16 eqidd 2611 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
17 eqidd 2611 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
18 eqidd 2611 . . 3 (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
191, 2, 3, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5prdsval 15938 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
20 prdsvsca.m . 2 · = ( ·𝑠𝑃)
21 vscaid 15839 . 2 ·𝑠 = Slot ( ·𝑠 ‘ndx)
22 ovssunirn 6579 . . . . . . . . . . 11 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ( ·𝑠 ‘(𝑅𝑥))
2321strfvss 15713 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
24 fvssunirn 6127 . . . . . . . . . . . . . 14 (𝑅𝑥) ⊆ ran 𝑅
25 rnss 5275 . . . . . . . . . . . . . 14 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
26 uniss 4394 . . . . . . . . . . . . . 14 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
2724, 25, 26mp2b 10 . . . . . . . . . . . . 13 ran (𝑅𝑥) ⊆ ran ran 𝑅
2823, 27sstri 3577 . . . . . . . . . . . 12 ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran 𝑅
29 rnss 5275 . . . . . . . . . . . 12 (( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran 𝑅 → ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
30 uniss 4394 . . . . . . . . . . . 12 (ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅 ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
3128, 29, 30mp2b 10 . . . . . . . . . . 11 ran ( ·𝑠 ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅
3222, 31sstri 3577 . . . . . . . . . 10 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅
33 ovex 6577 . . . . . . . . . . 11 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ V
3433elpw 4114 . . . . . . . . . 10 ((𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅 ↔ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅)
3532, 34mpbir 220 . . . . . . . . 9 (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅
3635a1i 11 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ran ran ran 𝑅)
37 eqid 2610 . . . . . . . 8 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))
3836, 37fmptd 6292 . . . . . . 7 (𝜑 → (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅)
39 rnexg 6990 . . . . . . . . . . 11 (𝑅𝑊 → ran 𝑅 ∈ V)
40 uniexg 6853 . . . . . . . . . . 11 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
415, 39, 403syl 18 . . . . . . . . . 10 (𝜑 ran 𝑅 ∈ V)
42 rnexg 6990 . . . . . . . . . 10 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
43 uniexg 6853 . . . . . . . . . 10 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
4441, 42, 433syl 18 . . . . . . . . 9 (𝜑 ran ran 𝑅 ∈ V)
45 rnexg 6990 . . . . . . . . 9 ( ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
46 uniexg 6853 . . . . . . . . 9 (ran ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
47 pwexg 4776 . . . . . . . . 9 ( ran ran ran 𝑅 ∈ V → 𝒫 ran ran ran 𝑅 ∈ V)
4844, 45, 46, 474syl 19 . . . . . . . 8 (𝜑 → 𝒫 ran ran ran 𝑅 ∈ V)
49 dmexg 6989 . . . . . . . . . 10 (𝑅𝑊 → dom 𝑅 ∈ V)
505, 49syl 17 . . . . . . . . 9 (𝜑 → dom 𝑅 ∈ V)
513, 50eqeltrrd 2689 . . . . . . . 8 (𝜑𝐼 ∈ V)
5248, 51elmapd 7758 . . . . . . 7 (𝜑 → ((𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅𝑚 𝐼) ↔ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))):𝐼⟶𝒫 ran ran ran 𝑅))
5338, 52mpbird 246 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅𝑚 𝐼))
5453ralrimivw 2950 . . . . 5 (𝜑 → ∀𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅𝑚 𝐼))
5554ralrimivw 2950 . . . 4 (𝜑 → ∀𝑓𝐾𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅𝑚 𝐼))
56 eqid 2610 . . . . 5 (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))
5756fmpt2 7126 . . . 4 (∀𝑓𝐾𝑔𝐵 (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))) ∈ (𝒫 ran ran ran 𝑅𝑚 𝐼) ↔ (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅𝑚 𝐼))
5855, 57sylib 207 . . 3 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅𝑚 𝐼))
59 fvex 6113 . . . . . 6 (Base‘𝑆) ∈ V
602, 59eqeltri 2684 . . . . 5 𝐾 ∈ V
61 fvex 6113 . . . . . 6 (Base‘𝑃) ∈ V
626, 61eqeltri 2684 . . . . 5 𝐵 ∈ V
6360, 62xpex 6860 . . . 4 (𝐾 × 𝐵) ∈ V
64 ovex 6577 . . . 4 (𝒫 ran ran ran 𝑅𝑚 𝐼) ∈ V
65 fex2 7014 . . . 4 (((𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅𝑚 𝐼) ∧ (𝐾 × 𝐵) ∈ V ∧ (𝒫 ran ran ran 𝑅𝑚 𝐼) ∈ V) → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
6663, 64, 65mp3an23 1408 . . 3 ((𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))):(𝐾 × 𝐵)⟶(𝒫 ran ran ran 𝑅𝑚 𝐼) → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
6758, 66syl 17 . 2 (𝜑 → (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) ∈ V)
68 snsstp2 4288 . . . 4 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}
69 ssun2 3739 . . . 4 {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
7068, 69sstri 3577 . . 3 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
71 ssun1 3738 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
7270, 71sstri 3577 . 2 {⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
7319, 20, 21, 67, 72prdsvallem 15937 1 (𝜑· = (𝑓𝐾, 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  wss 3540  𝒫 cpw 4108  {csn 4125  {cpr 4127  {ctp 4129  cop 4131   cuni 4372   class class class wbr 4583  {copab 4642  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  𝑚 cmap 7744  Xcixp 7794  supcsup 8229  0cc0 9815  *cxr 9952   < clt 9953  ndxcnx 15692  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  ·𝑖cip 15773  TopSetcts 15774  lecple 15775  distcds 15777  Hom chom 15779  compcco 15780  TopOpenctopn 15905  tcpt 15922   Σg cgsu 15924  Xscprds 15929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931
This theorem is referenced by:  prdsle  15945  prdsds  15947  prdstset  15949  prdshom  15950  prdsco  15951  prdsvscaval  15962
  Copyright terms: Public domain W3C validator